Math, asked by Anonymous, 6 months ago

Please Solve Fast With Full Explanation. ​

Attachments:

Answers

Answered by shadowsabers03
13

Join OL. The triangle OLP will be right angled since the tangent PLQ is perpendicular to OL.

So by Pythagoras' theorem,

\longrightarrow PL^2=OP^2-OL^2

\longrightarrow PL^2=(PT+OT)^2-OL^2

Note that OT and OL are radii of the circle.

\longrightarrow PL^2=\left(\dfrac{16}{3}+\dfrac{10}{3}\right)^2-\left(\dfrac{10}{3}\right)^2

\longrightarrow PL^2=\left(\dfrac{26}{3}\right)^2-\left(\dfrac{10}{3}\right)^2

\longrightarrow PL^2=\dfrac{676}{9}-\dfrac{100}{9}

\longrightarrow PL^2=\dfrac{576}{9}

\longrightarrow PL^2=64

\longrightarrow PL=8\ cm

The triangle PQR is also right angled since PR, passing along OR, is perpendicular to QR.

So by Pythagoras' Theorem,

\longrightarrow PQ^2=PR^2+QR^2

\longrightarrow (PL+QL)^2=(PT+RT)^2+QR^2

Note that RT is a diameter of the circle.

And here QL=QR because they're tangents to the circle drawn from the same point.

Therefore,

\longrightarrow \left(8+QL\right)^2=\left(\dfrac{16}{3}+2\times\dfrac{10}{3}\right)^2+QL^2

\longrightarrow 64+QL^2+16QL=\left(\dfrac{16}{3}+\dfrac{20}{3}\right)^2+QL^2

\longrightarrow 64+16QL=144

\longrightarrow\underline{\underline{QL=5\ cm}}

Hence 5 cm is the answer.

Similar questions