Math, asked by AbhishekAir, 1 year ago

Please solve... Fgjgffdhjkvddfghhjkjvhh

Attachments:

Answers

Answered by Ramanujmani
6
heya...!!!


 \frac{sin \alpha }{sec \alpha  + tan \alpha  - 1 }   +  \frac{cos \alpha }{cosec \alpha   + cot \alpha - 1} \\  \\  =  >   \frac{sin \alpha }{  \frac{1}{cos \alpha }   +  \frac{sin \alpha }{ cos \alpha  } - 1 }  +  \frac{cos \alpha }{ \frac{1}{sin \alpha }   +  \frac{cos \alpha }{sin \alpha } - 1 }  \\  \\  =  >  \frac{sin \alpha }{ \frac{1 + sin \alpha -  cos \alpha  }{cos \alpha } }  +  \frac{cos \alpha }{ \frac{1 + cos \alpha  - sin \alpha }{sin \alpha } }  \\  \\  =  >  \frac{sin \alpha cos \alpha }{1 + sin \alpha -  cos \alpha} +  \frac{sin \alpha cos \alpha }{1 + cos \alpha  - sin \alpha }   \\  \\  =  >  \frac{sin \alpha cosa(1 + cos \alpha  - sin \alpha + 1 +sin \alpha  - cos \alpha )  }{(1 + sin \alpha  - cos \alpha )(1 + cos \alpha  - sin \alpha )}  \\  \\   =  >  \frac{sin \alpha cos \alpha  \times 2}{1 + cos \alpha  - sin \alpha  + sin \alpha  + sin \alpha cos \alpha  -  {sin}^{2} \alpha - cos \alpha  -  {cos}^{2}    \alpha  + cos \alpha si n\alpha }  \\  \\  =  >  \frac{sin \alpha cos \alpha  \times 2}{1 -  {sin}^{2} \alpha  -  {cos}^{2}   \alpha  + 2sin \alpha cos \alpha }  \\  \\  =  >  \frac{2sin \alpha cos \alpha }{1 - ( {cos}^{2} \alpha  +  {sin}^{2}  \alpha ) + 2sin \alpha cos \alpha  }  \\  \\  =  >  \frac{2sin \alpha cos \alpha }{1 - 1 + 2sin \alpha cos \alpha }  \\  \\   =  >  \frac{2sin \alpha cos \alpha }{2sin \alpha cos \alpha }  = 1
Similar questions