Math, asked by JanviMalhan, 4 months ago

please solve following questions..​

Attachments:

Answers

Answered by Flaunt
100

\sf\huge{\bold{\underline{Question}}}

In a \triangle\:ABC,the sides AB and AC are produced to point D and E respectively.The bisectors of \angle\:DBC and \angle\:ECB intersect at a point O.

To Prove

\sf\angle\:BOC=\bigg(90^{\circ}-\dfrac{1}{2}\angle A\bigg)

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Given:

OB and OC are angle bisector of DBC and ECB.

\implies\sf\angle\:OBC =  \dfrac{1}{2}  \angle \: DBC.........(1)

Similarly,

\implies\sf\angle\:OCB=  \dfrac{1}{2}  \angle \: ECB..........(2)

\implies\sf\angle\:DBC=    \angle \: A+\angle\:ACB....…...(3)[exterior angle property]

\implies\sf\angle\:ECB =   \angle \:A+\angle\:ABC........(4)[exterior angle property]

In \sf\triangle\:BOC

\implies\sf\angle\:BOC+\angle\:OBC+\angle\:OCB=  180^{\circ} [Angle sum property]

\implies\sf\angle\:BOC =  180^{\circ}-\angle\:OBC-\angle\:OCB

\implies\sf  180^{\circ}-\bigg(\angle\:OBC+\angle\:OCB\bigg).........(5)

By Using Equation 1,2,3 and 4 we have ,

\implies\sf\angle\:OBC =  \dfrac{1}{2}  \angle \: DBC=\dfrac{1}{2}\bigg(\angle A+\angle\:ACB\bigg)

\implies\sf\angle\:OCB =  \dfrac{1}{2}  \angle \: ECB=\dfrac{1}{2}\bigg(\angle A+\angle\:ABC\bigg)

\implies\sf\angle\:BOC =180^{\circ}-\bigg(\angle\:OBC+\angle\:OCB\bigg)

 \implies\sf 180 =\bigg[\dfrac{1}{2} \bigg(\angle A+ \angle\:ACB\bigg) +  \dfrac{1}{2}\bigg (\angle A+ \angle\:ABC\bigg)\bigg]

 \implies\sf 180 - \bigg[ \dfrac{1}{2} \bigg(\angle A\bigg) +  \dfrac{1}{2} \bigg(\angle A+ \angle\:ABC + \angle\:ACB\bigg)\bigg]

 \implies\sf 180 -\bigg ( \dfrac{1}{2} \angle A +  \dfrac{180^{\circ}}{2}\bigg )

\implies\sf\angle\:BOC= 90 -  \dfrac{1}{2} \angle A\bigg(Proved\bigg)

Attachments:
Similar questions