Math, asked by nanajita, 4 months ago

please solve for 50 points

Note :- Don't spam otherwise I will reported your 10 answer ​

Attachments:

Answers

Answered by Anonymous
2

Hii,

Before you attempt to solve this question, it is worthy to know these formulas :-

 \frac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}  \\  {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}  \\  {( {x}^{m}) }^{n}  =  {x}^{mn}

Now, Coming to the question

 \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }   \\   \\  =  \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{b} } }  +  \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a} } }  \\  \\  =  \frac{ {x}^{b} }{ {x}^{b}  +  {x}^{a} }  +  \frac{ {x}^{a} }{ {x}^{a} +  {x}^{b}  }  \\  \\  =  \frac{ {x}^{b} +  {x}^{a}  }{ {x}^{b} +  {x}^{a}  }  \\  \\  = 1

Hence proved .

Answered by shinchanisgreat
1

Question:

 =  >  \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }  = 1

Answer:

=  >  \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }  = 1

 =  >  \frac{1 +  {x}^{b - a}  + 1 +  {x}^{a - b} }{1 +  {x}^{b - a}  +  {x}^{a - b} +  {x}^{a - b + b - a}  }  = 1

 =  > 2 +  {x}^{b - a}  +  {x}^{a - b} = 1 +   {x}^{b - a}  +  {x}^{a - b}  +  {x}^{0}

 =  > 2 +  {x}^{b - a}  +  {x}^{a - b} = 1  + {x}^{b - a}  +  {x}^{a - b} + 1

 =  > 2 +  {x}^{b - a}  +  {x}^{a - b} = 2 +  {x}^{b - a}  +  {x}^{a - b}

L.H.S. = R.H.S.

Hence, proved.

Hope this answer helps you ^_^ !

Similar questions