Math, asked by mantashanoor, 11 months ago

please solve fst please​

Attachments:

Answers

Answered by LovelyG
12

Question: If \sf x-\frac{1}{x} = 3 + 2√2, find the value of \sf \frac{1}{4}(x^{3} - \frac{1}{x^{3}})

Answer:

\large{\underline{\boxed{\sf \frac{1}{4}( {x}^{3}  -  \frac{1}{ {x}^{3} } )=27 + 19 \sqrt{2} }}}

Step-by-step explanation:

Given that -

 \implies \tt x -  \frac{1}{x}  = 3 + 2 \sqrt{2}  \\  \\ \bf On \: cubing \: both \: sides :  \\  \\ \implies \tt  (x -  \frac{1}{x} ) {}^{3}  = (3 + 2 \sqrt{2} ) {}^{3}  \\  \\  \implies \tt {x}^{3}  -   \frac{1}{ {x}^{3} }  -  3(x  -   \frac{1}{x} ) = (3) {}^{3}  + (2 \sqrt{2} ) {}^{3}  + 3.3.2 \sqrt{2} (3 + 2 \sqrt{2} ) \\  \\  \implies \tt {x}^{3} -  \frac{1}{ {x}^{3}} - 3(3 + 2 \sqrt{2} ) = 27 + 16 \sqrt{2}  + 18 \sqrt{2} (3 + 2 \sqrt{2} ) \\  \\ \implies \tt  {x}^{3} -   \frac{1}{ {x}^{3} } - 9 - 6 \sqrt{2}  = 27 + 16 \sqrt{2}  + 54 \sqrt{2}  + 72 \\  \\  \implies \tt  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 9 - 6 \sqrt{2}  = 99 + 70 \sqrt{2}  \\  \\ \implies \tt  {x}^{3}  -  \frac{1}{ {x}^{3} } = 99 + 9 + 70 \sqrt{2}  + 6 \sqrt{2}  \\  \\  \implies \tt {x}^{3}  -  \frac{1}{ {x}^{3} } = 108 + 76 \sqrt{2}  \\  \\ \implies \tt {x}^{3}  -  \frac{1}{ {x}^{3} } = 4(27 + 19 \sqrt{2} )

Now, we have to find \tt \frac{1}{4}(x^{3} - \frac{1}{x^{3}})

\implies \tt {x}^{3}  -  \frac{1}{ {x}^{3} } = 4(27 + 19 \sqrt{2} ) \\  \\ \bf Multiplying \:  \frac{1}{4}  \: both \: sides :  \\  \\ \implies \tt  \frac{1}{4}( {x}^{3}  -  \frac{1}{ {x}^{3} } )=  \frac{1}{4}  \:  .\: 4(27 + 19 \sqrt{2} ) \\  \\ \boxed {\bf \therefore \:  \frac{1}{4}( {x}^{3}  -  \frac{1}{ {x}^{3} } )=27 + 19 \sqrt{2} }

_________________________

★ Identity Used:

  • (a - b)³ = a³ - b³ - 3ab (a - b)
Similar questions