Math, asked by darkrai7xxx, 4 months ago

please solve full question step by step fast​

Attachments:

Answers

Answered by 567sweetysharma
1

Step-by-step explanation:

I hope this answer helps you

Attachments:
Answered by mathdude500
1

Answer:

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}} \\

 ∫  \frac{1}{cos2x +  {3sin}^{2} x} dx \\  =  ∫  \frac{1}{1 - 2 {sin}^{2} x +  {3sin}^{2}x } dx \\  =  ∫  \frac{1}{1 +  {sin}^{2} x} dx \\ \small\bold\red{(divide \: numerator \: and \: denominator \: by \:  {cos}^{2} x)} \\  =  ∫  \frac{ {sec}^{2}x }{ \:  {sec}^{2}x \:  +  {tan}^{2} x } dx \\  =  ∫  \frac{ {sec}^{2}x }{1 +  {tan}^{2}x +  {tan}^{2} x } dx \\  =  ∫  \frac{ {sec}^{2}x }{1 +  {2tan}^{2} x} dx \\ \small\bold\red{(put \: tanx \:  = t \:  =  >  \:  {sec}^{2} x \: dx \:  = dt)} \\  =  ∫  \frac{1}{1 +  {2t}^{2} } dt \\  =  \frac{1}{2}  ∫  \frac{dt}{ {t}^{2}  +  \frac{1}{2} }  \\  = \frac{1}{2}   ∫  \frac{dt}{ {t}^{2}  +  {( \frac{1}{ \sqrt{2} } )}^{2} }   \\  =  \frac{1}{2}  \times  \frac{1}{ \frac{1}{ \sqrt{2} } }  {tan}^{ - 1}  \frac{t}{ \frac{1}{ \sqrt{2} } }  + c \\  =  \frac{1}{ \sqrt{2} }  {tan}^{ - 1}  \sqrt{2} t + c \\  =  \frac{1}{ \sqrt{2} }  {tan}^{ - 1} ( \sqrt{2} tanx) + c

\large\bold\red{formula \: used} \\ \large\bold\red{cos2x = 1 -  {2sin}^{2} x} \\ \large\bold\red{ ∫  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a}  {tan}^{ - 1}  \frac{x}{a}  + c}

\huge \fcolorbox{black}{cyan}{♛hope \: it \: helps \: you♛}

Similar questions