Math, asked by KripanshPandey, 4 months ago


please solve guys as fast as you can plzzzzzzz

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 log( {x}^{3} + 5 )  = 3 log(x + 2) \\

 =  >  log( {x}^{3}  + 5)  =  log(x + 2) ^{3}

 =  >  {x}^{3}  + 5 =  {(x + 2)}^{3}

 =  >  {x}^{3}  + 5 =  {x}^{3}  + 3. {x}^{2} .2 + 3.x.(2)^{2}  +  {2}^{3}

 =  > 5 = 6 {x}^{2}  + 12x + 8

 =  > 6 {x}^{2}  + 12x + 3 = 0

 =  > 2 {x}^{2}  + 4x + 1 = 0

  =  > x =  \frac{ - 4 +  \sqrt{ {4}^{2}  - 4 \times 2 \times 1} }{2 \times 2}\:  \: or \:  \:   x =  \frac{ - 4  -  \sqrt{ {4}^{2}  - 4 \times 2 \times 1} }{2 \times 2} \\

  =  > x =  \frac{ - 4 +  \sqrt{ 8} }{4} \:  \: or \:  \: x =  \frac{ - 4  -   \sqrt{ 8} }{4} \\

 =  > x =  \frac{ - 4 + 2 \sqrt{ 2} }{4} \:  \: or \:  \: x =  \frac{ - 4  -   2\sqrt{ 2} }{4} \\

 =  > x =  \frac{ - 2+  \sqrt{ 2} }{2} \:  \: or \:  \: x =  \frac{ - 2  -   \sqrt{ 2} }{2} \\

Similar questions