Math, asked by ritikaverenkar, 9 months ago

Please solve . Ignore the mess above . Don’t spam

Attachments:

Answers

Answered by Anonymous
12

To Prove -

  \frac{ \sin( \theta) }{ \cot( \theta) +  \csc( \theta)  }   = 2 +  \frac{ \sin( \theta) }{ \cot( \theta)  -  \csc( \theta) }  \\

Solution:-

Taking LHS -

\sf{\implies  \frac{ \sin( \theta) }{ \cot( \theta) +  \csc( \theta)  }  }\\

Converting cot and cosec in the form of sin and Cos.

\sf{\implies  \frac{ \sin( \theta) }{ \frac{ \cos( \theta) }{ \sin( \theta) } +  \frac{1}{ \sin( \theta) }  } }  \\

\sf{\implies \frac{ \sin(\theta) }{ \frac{ \cos(\theta)  + 1}{ \sin(\theta) } }} \\

\sf{\implies \:  \frac{ \sin(\theta) \times  \sin(\theta) }{ \cos(\theta) + 1 }}  \\

Sin²a = 1 - cos²a .

\sf{\implies \:  \frac{ 1 - {\cos}^{2} \theta }{ \cos(\theta) + 1 }  }\\

- = (a+b)(a-b)

\sf{ \implies \:  \frac{(1 -  \cos(\theta))(1 +  \cos(\theta))  }{1 +  \cos(\theta) }  } \\

\sf{ \implies \:  \frac{ (1 -  \cos(\theta)) \cancel{(1 +  \cos(\theta)) } }{ \cancel{1 +  \cos(\theta) }}  }\\

1 - cos theta = LHS .

Now taking RHS .

\sf{\implies 2 +  \frac{ \sin( \theta) }{ \cot( \theta)  -  \csc( \theta) }}  \\

\sf{\implies  2 + \frac{ \sin( \theta) }{ \frac{ \cos( \theta) }{ \sin( \theta) } -  \frac{1}{ \sin( \theta) }  } }  \\

\sf{\implies 2 + \frac{ \sin(\theta) }{ \frac{ \cos(\theta)  - 1}{ \sin(\theta) } }} \\

\sf{\implies \: 2 + \frac{ \sin(\theta) \times  \sin(\theta) }{ \cos(\theta) -  1 }}  \\

Sin²a = 1 - cos²a .

\sf{\implies \: 2+   \frac{ 1 - {\cos}^{2} \theta }{ \cos(\theta) -  1 }  }\\

a² - b² = (a+b)(a-b)

\sf{ \implies \: 2+   \frac{(1 -  \cos(\theta))(1 +  \cos(\theta))  }{- ( \cos(\theta) - 1) }  } \\

\sf{\implies \: \frac{ - 2 + 1 + \cos \theta }{-1} }\\

\sf{\implies \: \frac{  - 1 + \cos \theta }{-1} }\\

1 - Cos theta = RHS

LHS = RHS

Hence proved .

Answered by Anonymous
22

Question :

Prove :

\sf\frac{\sin\theta}{\cot\theta+\cot\theta}=2+\frac{\sin\theta}{\cot\theta-\cosec\theta}

Solution :

LHS =\sf\frac{\sin\theta}{\cot\theta+\cot\theta}

=\sf\dfrac{\sin\theta}{\frac{\cos\theta}{\sin\theta}+\frac{1}{\sin\theta}}

=\sf\frac{\sin^2\theta}{(1+\cos\theta)}

=\sf\frac{1-\cos^2\theta}{(1+\cos\theta)}

=\sf\frac{(1+\cos\theta)(1-\cos\theta)}{(1+\cos\theta)}

\sf=1-\cos\theta....(1)

RHS =\sf2+\frac{\sin\theta}{\cot\theta-\cot\theta}

=\sf2+\dfrac{\sin\theta}{\frac{\cos\theta}{\sin\theta}-\frac{1}{\sin\theta}}

=\sf2+\frac{\sin^2\theta}{(\cos\theta-1)}

=\sf2+\frac{1-\cos^2\theta}{(\cos\theta-1)}

=\sf2+\frac{(1+\cos\theta)(1-\cos\theta)}{\cos\theta-1)}

=\sf2+\frac{(1+\cos\theta)(1-\cos\theta)}{(-1)(1-\cos\theta)}

\sf=2-(1+\cos\theta)...(2)

LHS = RHS

⇒1-cosθ=2-(1+cosθ)

⇒(1-cosθ)+(1-cosθ)=2

⇒2=2

Hence ,Proved

Similar questions