Math, asked by amishafilomeena1003, 12 hours ago

Please solve in this question​

Attachments:

Answers

Answered by mathdude500
3

Question :-

\rm \:  If \: {x}^{2} + \dfrac{4}{ {x}^{2} } = 5, \: then \: find \:  {x}^{3} + \dfrac{8}{ {x}^{3} } . \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {x}^{2} + \dfrac{4}{ {x}^{2} } = 5

can be rewritten as

\rm \:  {x}^{2} + \dfrac{4}{ {x}^{2} } + 4 = 5  + 4

\rm \:  {x}^{2} + \dfrac{4}{ {x}^{2} } + 2 \times 2 = 9 \\

\rm \:  {x}^{2} + \dfrac{4}{ {x}^{2} } + 2 \times x \times  \frac{2}{x}  = 9 \\

\rm \:  {x}^{2} +  {\bigg(\dfrac{2}{x}  \bigg) }^{2}  + 2 \times x \times  \frac{2}{x}  = 9 \\

We know,

\boxed{ \rm{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy \: }} \\

So, using this identity, we get

\rm \:  {\bigg(x + \dfrac{2}{x}  \bigg) }^{2} = 9 \\

\bf\implies \:x + \dfrac{2}{x} =  \:  \pm \: 3 \\

Now, Consider Case :- 1

\rm \: When \:  \:x + \dfrac{2}{x} =  \: 3 \\

On cubing both sides, we get

\rm \:  \:\bigg(x + \dfrac{2}{x}\bigg)^{3}  =  \:  {3}^{3} \\

We know,

\boxed{ \rm{ \: {(x + y)}^{3} =  {x}^{3} +  {y}^{3}  + 3xy(x + y) \: }} \\

So, using this identity, we get

\rm \:  {x}^{3} + \dfrac{8}{ {x}^{3} } + 3 \times x \times  \dfrac{2}{x} \times \bigg(x + \dfrac{2}{x}  \bigg) = 27 \\

\rm \:  {x}^{3} + \dfrac{8}{ {x}^{3} } +6 \times 3 = 27 \\

\rm \:  {x}^{3} + \dfrac{8}{ {x}^{3} } +18= 27 \\

\bf\implies \: {x}^{3} + \dfrac{8}{ {x}^{3} } = 9 \\

Now, Consider Case : - 2

\rm \: When \:  \:x + \dfrac{2}{x} =  \: -  3 \\

On cubing both sides, we get

\rm \:  \:\bigg(x + \dfrac{2}{x}\bigg)^{3}  =  \:  {( - 3)}^{3} \\

We know,

\boxed{ \rm{ \: {(x + y)}^{3} =  {x}^{3} +  {y}^{3}  + 3xy(x + y) \: }} \\

So, using this identity, we get

\rm \:  {x}^{3} + \dfrac{8}{ {x}^{3} } + 3 \times x \times  \dfrac{2}{x} \times \bigg(x + \dfrac{2}{x}  \bigg) =  - 27 \\

\rm \:  {x}^{3} + \dfrac{8}{ {x}^{3} } +6 \times ( - 3) =  - 27 \\

\rm \:  {x}^{3} + \dfrac{8}{ {x}^{3} }  - 18=  - 27 \\

\bf\implies \: {x}^{3} + \dfrac{8}{ {x}^{3} } =  -  \: 9 \\

So, from above we concluded that

\bf\implies \: {x}^{3} + \dfrac{8}{ {x}^{3} } =   \pm \: 9 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Talpadadilip783
9

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

 \begin{array}{ll} \rm \underline{\underline{\text { Sol }^{n}}} & \displaystyle  \rm x^{2}+\frac{4}{x^{2}}=5 \\ \\  &\displaystyle  \rm \left(x+\frac{2}{x}\right)^{2}-2 \times x \times \frac{2}{x}=5 \\ \\  &\displaystyle  \rm \left(x+\frac{2}{x}\right)^{2}-4=5 \\  \\ & \displaystyle  \rm\left(x+\frac{2}{x}\right)^{2}=9 \\ \\  &\displaystyle  \rm\left(x+\frac{2}{x}\right)^{2}=(3)^{2} \\ \\  \Rightarrow &\displaystyle  \rm x+\frac{2}{x}=3\end{array}

Now; \displaystyle \rm \left(x+\frac{2}{x}\right)^{3}=x^{3}+\left(\frac{2}{x}\right)^{3}+3 \times x \times \frac{2}{x}\left(x+\frac{2}{x}\right)

 \[ \begin{array}{l}  \displaystyle\rm  \therefore x^{3}+\left(\frac{2}{x}\right)^{3}=\left(x+\frac{2}{x}\right)^{3}-3 \times x \times \frac{2}{x}\left(x+\frac{2}{x}\right) \\ \\  \displaystyle\rm x^{3}+\frac{8}{x^{3}}=(3)^{3}-3 \times 2(3) \\\\  \displaystyle\rm x^{3}+\frac{8}{x^{3}}=27-18 \\\\  \color{darkorange} \boxed{ \displaystyle\rm \therefore x^{3}+\frac{8}{x^{3}}=9} \end{array} \]

Answer :-Value of \rm x^{3}+\dfrac{8}{x^{3}} is 9

Similar questions