Math, asked by amishafilomeena1003, 16 hours ago

Please solve in this question

Using Factor Theorem, Factorize x ^ 3 + 10x ^ 2 - 37x + 26​

Answers

Answered by Talpadadilip783
16

   \small\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

Factor the following.

 \rm{x}^{3}+10{x}^{2}-37x+26

2 First, find all factors of the constant term 26.

1, 2, 13, 26

Try each factor above using the Remainder Theorem.

Substitute 1 into x. Since the result is 0, x-1 is a factor..

 \rm{1}^{3}+10\times {1}^{2}-37\times 1+26 = 0

  • x-1

Polynomial Division: Divide \rm{x}^{3}+10{x}^{2}-37x+26

[NOTE]:-

 \fcolorbox{green}{lightyellow}{\boxed{\scriptsize{\mathbb\pink{REFERR \:TO\: THE\:\: ATTACHMENT }}}}

Rewrite the expression using the above.

 \rm({x}^{2}+11x-26)(x-1)

Factor x²+11x-26.

1.Ask: Which two numbers add up to 11 and multiply to −26?

−2 and 13

2. Rewrite the expression using the above.

(x-2)(x+13)

 \fcolorbox{magenta}{olive}{  \boxed{\red{  \rm  \large{\dashrightarrow} \small(x-2)(x+13)(x-1)}}}

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {x}^{3} +  {10x}^{2} - 37x + 26 \\

Let assume that

\rm \: f(x) =  {x}^{3} +  {10x}^{2} - 37x + 26 \\

Let we first find the factor of f(x) by using hit and trial method.

Let assume that x = 1, so we get

\rm \: f(1) =  {(1)}^{3} +  {10(1)}^{2} - 37(1) + 26 \\

\rm \:  =  \: 1 + 10 - 37 + 26  \\

\rm \:  =  \: 37 - 37\\

 \rm \: =  \: 0 \\

\rm\implies \:x - 1 \: is \: a \: factor \: of \: f(x) \\

So, by using Long Division Method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} + 11x - 26\:\:}}}\\ {\underline{\sf{x - 1}}}& {\sf{\: {x}^{3} +   {10x}^{2} - 37x + 26\:\:}} \\{\sf{}}& \underline{\sf{ \:- {x}^{3} + {x}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\:  \:  \:  \:  \:  \:  \:  \:  \: 11{x}^{2} - 37x + 26 \: }} \\{\sf{}}& \underline{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \: - 11{x}^{2} + 11x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\:   - 26x + 26  \:\:}} \\{\sf{}}& \underline{\sf{\:  \:  \:  \:  \:  \:  \: 26x - 26\:\:}} \\ {\underline{\sf{}}}& {\sf{ \:  \:  \:  \:  \:  \:  \:  \: 0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

We know,

Dividend = Divisor × Quotient + Remainder

So, on substituting the values from above, we have

\rm \:  {x}^{3} +  {10x}^{2} - 37x + 26 = (x - 1)( {x}^{2} + 11x - 26) \\

\rm \:  = (x - 1)( {x}^{2} + 13x - 2x - 26) \\

\rm \:  = (x - 1)[x(x + 13) - 2(x + 13)] \\

\rm \:  = (x - 1)[(x + 13)(x - 2)] \\

\rm \:  =  \: (x - 1)(x - 2)(x + 13) \\

Hence,

\red{\boxed{ \rm{ \:\sf \:  {x}^{3} +  {10x}^{2} - 37x + 26 = (x - 1)(x - 2)(x + 13)}  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions