Math, asked by aryanarora97, 8 months ago

please solve..........................................................iodjoi[d.d.

Attachments:

Answers

Answered by Naisha28
0
(√3-1)/(√3+1)
=[(√3-1)/(√3+1)]×[(√3-1)/(√3-1)]

=(3+1-2√3)/(3-1)

=(4-2√3)/2

=[2(2-√3)]/2

=2-√3
a-b√3=2-√3
∴the values of a=2 and b=1
So the values of a and b are 2 and 1 respectively.



Hope it helps...
Please mark my answer as the brainliest...
Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

  \green{{if \: x + y \sqrt{3}  = a + b  \sqrt{3}  \:  \:  \: then \:  \: x = a , y = b}}

TO DETERMINE

There value of a & b where

 \displaystyle \:  \frac{ \sqrt{ {3}  } - 1 }{ \sqrt{3} + 1 }  = a + b \sqrt{3}

PROCESS

In order to find the required value

  • we have multiply numerator and denominator if LHS both by the conjugate surd of denominator

  • Then to compare both sides

CALCULATION

 \displaystyle \:  \frac{ \sqrt{ {3}  } - 1 }{ \sqrt{3} + 1 }  = a + b \sqrt{3}

 \implies \:  \displaystyle \:  \frac{( \sqrt{ {3}  } - 1)( \sqrt{3}  - 1) }{ (\sqrt{3} + 1)( \sqrt{3}  - 1) }  = a + b \sqrt{3}

 \implies \:  \displaystyle \:  \frac{{( \sqrt{ {3}  } - 1)}^{2}  }{ {( \sqrt{3})}^{2}  -  {(1)}^{2}  }  = a + b \sqrt{3}

 \implies \:  \displaystyle \:  \frac{{( { {3}  } - 2 \sqrt{3}  + 1)}}{ 3 - 1}  = a + b \sqrt{3}

 \implies \:  \displaystyle \:  \frac{{4 - 2\sqrt{ {3}  } }  }{2}  = a + b \sqrt{3}

 \implies \:  \displaystyle \:  \frac{{2(2 - \sqrt{ {3}  } }  )}{2}  = a + b \sqrt{3}

 \implies \:  \displaystyle \: 2 - \sqrt {3}   = a + b \sqrt{3}

 \implies \:  \displaystyle \:  a + b \sqrt{3}  = 2 -  \sqrt{3}

 \implies \:  \displaystyle \:  a \:  = 2 \:  \:  \:  \: and \:  \: b \:  =  - 1

RESULT

  \red{\fbox  {a = 2 \:  \:  , b =  - 1\: } \: }

Similar questions