Math, asked by MяMαgıcıαη, 1 year ago

please solve it.....​

Attachments:

Answers

Answered by SugaryCherrie
39

Answer:

 ({x}^{3}  +  \frac{1}{ {x}})^{2}  - 3(x +  \frac{1}{x}) + (x +  \frac{1}{2} {)}^{2} - 2 + x +  \frac{1}{x} = 70 \\ (x +  \frac{1}{x} {)}^{2} - (x +  \frac{1}{x} {)}^{2} - 2(x +  \frac{1}{x}) - 72 = 0 \\ (x +  \frac{1}{x} - 4)((x +  \frac{1}{x} {)}^{2} + 5(x +  \frac{1}{x}) + 18) = 0 \\ (x +  \frac{1}{x} - 4)((x +  \frac{1}{x} +  \frac{5}{2} {)}^{2} +  \frac{47}{4})) = 0 \\ x +  \frac{1}{x - 4 = 0} \: x +  \frac{1}{x} = 4   \\  {x}^{2} +  \frac{1}{ {x}^{2} } = (x +  \frac{1}{x} {)}^{2} - 2 = 16 - 2 = 14 \\  {x}^{4} +  \frac{1}{ {x}^{4} } = ( {x}^{2} +  \frac{1}{ {x}^{2} } {)}^{2} = 196 - 2 = 194 \\  =  {x}^{4} +  \frac{1}{ {x}^{4} } = 194

unblock me bhaiya plz :(

Answered by ItzDinu
7

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-Añswer♡}}}

\large\bf{\underline{\red{VERIFIED✔}}}

</p><p>\begin{gathered} ({x}^{3} + \frac{1}{ {x}})^{2} - 3(x + \frac{1}{x}) + (x + \frac{1}{2} {)}^{2} - 2 + x + \frac{1}{x} = 70 \\ (x + \frac{1}{x} {)}^{2} - (x + \frac{1}{x} {)}^{2} - 2(x + \frac{1}{x}) - 72 = 0 \\ (x + \frac{1}{x} - 4)((x + \frac{1}{x} {)}^{2} + 5(x + \frac{1}{x}) + 18) = 0 \\ (x + \frac{1}{x} - 4)((x + \frac{1}{x} + \frac{5}{2} {)}^{2} + \frac{47}{4})) = 0 \\ x + \frac{1}{x - 4 = 0} \: x + \frac{1}{x} = 4 \\ {x}^{2} + \frac{1}{ {x}^{2} } = (x + \frac{1}{x} {)}^{2} - 2 = 16 - 2 = 14 \\ {x}^{4} + \frac{1}{ {x}^{4} } = ( {x}^{2} + \frac{1}{ {x}^{2} } {)}^{2} = 196 - 2 = 194 \\ = {x}^{4} + \frac{1}{ {x}^{4} } = 194 \end{gathered}

\boxed{I \:Hope\: it's \:Helpful}

{\sf{\bf{\blue{@ℐᴛz ᴅɪɴᴜ࿐}}}}

  • Shall We be Friends?
Similar questions