Please solve it.........
Answers
Answer:
Please refer the image
Step-by-step explanation:
To prove: \frac{sin\,2A}{1+cos\,2A}\times\frac{cos\,A}{1+cos\,A}=tan\,\frac{A}{2}
using,
cos 2x = 2.cos²x - 1
⇒ 1 + cos 2x = 2.cos²x
and sin 2x = 2 . sin x . cos x
and sin\,x=\frac{2.tan\,\frac{x}{2}}{1+tan^2\,\frac{x}{2}}
and sin\,x=\frac{1-tan^2\,\frac{x}{2}}{1+tan^2\,\frac{x}{2}}
Now, Consider
LHS
=\frac{sin\,2A}{1+cos\,2A}\times\frac{cos\,A}{1+cos\,A}
=\frac{2.sin\,A.cos\,A}{2.cos^2\,A}\times\frac{cos\,A}{1+cos\,A}
=\frac{sin\,A}{1+cos\,A}
=\frac{\frac{2.tan\,\frac{A}{2}}{1+tan^2\,\frac{A}{2}}}{1+\frac{1-tan^2\,\frac{A}{2}}{1+tan^2\,\frac{A}{2}}}
=\frac{\frac{2.tan\,\frac{A}{2}}{1+tan^2\,\frac{A}{2}}}{\frac{1+tan^2\,\frac{A}{2}+1-tan^2\,\frac{A}{2}}{1+tan^2\,\frac{A}{2}}}
=\frac{2.tan\,\frac{A}{2}}{1+tan^2\,\frac{A}{2}+1-tan^2\,\frac{A}{2}}
=\frac{2.tan\,\frac{A}{2}}{2}
=tan\,\frac{A}{2}
=RHS
hence proved.