please solve it.........
Answers
Question :
Prove :
Solution :
We have ,
Let
Now Differentiate with respect to x
Also ,
• When x = 0
⇒u=∞
•When x= 1
⇒u=0
Now ,
Now let
Now Differentiate with respect to x
Also,
• When x = 0
⇒u=∞
•When x= 1
⇒u=0
Now ,
Now multiply and divide by √π
We know that
i.e ,the interchange of limits of a definite integral changes only its sign. Then,
Now the integral changes in special(non-elementary ) type of integral ,which is known as Error Function
Error Function defined as :
Thus,
We know that erf(∞)=1
Hence, Proved
More About the topic :
The error function (also called the Gauss error function), often denoted by erf,
It is defined as:
Properties :
1) erf(∞)=1
2) Domain (-∞,∞)
Answer:
Question :
Prove :
\sf\int\limits_{0}^1\dfrac{dx}{\sqrt{-\log\:x}}=\sqrt{\pi}
0
∫
1
−logx
dx
=
π
Solution :
We have ,
\sf\int\limits_{0}^1\dfrac{dx}{\sqrt{-\log\:x}}
0
∫
1
−logx
dx
Let \sf\:u=-\log\:xu=−logx
Now Differentiate with respect to x
\sf\dfrac{du}{dx}=\dfrac{-1}{x}
dx
du
=
x
−1
\sf\:dx=-xdudx=−xdu
Also ,
\sf\:u=-\log\:xu=−logx
\sf\implies\:e^{-u}=x⟹e
−u
=x
• When x = 0
⇒u=∞
•When x= 1
⇒u=0
Now ,
\sf\int\limits_{0}^1\dfrac{dx}{\sqrt{-\log\:x}}
0
∫
1
−logx
dx
\sf=\int\limits_{\infty}^0\dfrac{1}{\sqrt{u}}\times-xdu=
∞
∫
0
u
1
×−xdu
\sf=\int\limits_{\infty}^0\dfrac{-e^{-u}}{\sqrt{u}}du=
∞
∫
0
u
−e
−u
du
Now let \sf\sqrt{u}=v
u
=v
Now Differentiate with respect to x
\sf\:du=2\sqrt{u}dvdu=2
u
dv
Also,
\sf\sqrt{u}=v
u
=v
• When x = 0
⇒u=∞
•When x= 1
⇒u=0
Now ,
\sf\int\limits_{\infty}^0\dfrac{-e^{-u}}{\sqrt{u}}du
∞
∫
0
u
−e
−u
du
\sf=\int\limits_{\infty}^0\dfrac{-e^{-v^2}}{v}\times2\sqrt{u}dv=
∞
∫
0
v
−e
−v
2
×2
u
dv
\sf=\int\limits_{\infty}^0\:-2e^{-v^2}dv=
∞
∫
0
−2e
−v
2
dv
Now multiply and divide by √π
\sf=\dfrac{\sqrt{\pi}}{\sqrt{\pi}}\int\limits_{\infty}^0-2e^{-v^2}dv=
π
π
∞
∫
0
−2e
−v
2
dv
\sf=\sqrt{\pi}\times-\int\limits_{\infty}^0\dfrac{2e^{-v^2}}{\sqrt{\pi}}dv=
π
×−
∞
∫
0
π
2e
−v
2
dv
We know that
\sf\int\limits_{a}^bf(x)dx=-\int\limits_{b}^af(x)dx
a
∫
b
f(x)dx=−
b
∫
a
f(x)dx i.e ,the interchange of limits of a definite integral changes only its sign. Then,
\sf=\sqrt{\pi}\int\limits_{0}^{\infty}\dfrac{2e^{-v^2}}{\sqrt{\pi}}dv=
π
0
∫
∞
π
2e
−v
2
dv
Now the integral changes in special(non-elementary ) type of integral ,which is known as Error Function
Error Function defined as :
\sf\:erf(x)=\dfrac{2}{\sqrt{\pi}}\int\limits_{0}^x\:e^{-t^2}dterf(x)=
π
2
0
∫
x
e
−t
2
dt
Thus,
\sf\sqrt{\pi}\int\limits_{0}^{\infty}\dfrac{2e^{-v^2}}{\sqrt{\pi}}dv
π
0
∫
∞
π
2e
−v
2
dv
\sf=\sqrt{\pi}\:erf(\infty)=
π
erf(∞)
We know that erf(∞)=1
\sf=\sqrt{\pi}=
π
Hence, Proved
\sf\int\limits_{0}^1\dfrac{dx}{\sqrt{-\log\:x}}=\sqrt{\pi}
0
∫
1
−logx
dx
=
π
\rule{200}2
More About the topic :
{\purple{\boxed{\large{\bold{Error\: Function}}}}}
ErrorFunction
The error function (also called the Gauss error function), often denoted by erf,
It is defined as:
\sf\:erf(x)=\dfrac{2}{\sqrt{\pi}}\int\limits_{0}^x\:e^{-t^2}dterf(x)=
π
2
0
∫
x
e
−t
2
dt
Properties :
1) erf(∞)=1
2) Domain (-∞,∞)
Step-by-step explanation: