please solve it and
Answers
Step-by-step explanation:
The value of (a+b)a is 20
The given equation is
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+b\sqrt{15}
5
−
3
5
+
3
=a+b
15
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=a+b\sqrt{15}
5
−
3
5
+
3
×
5
+
3
5
+
3
=a+b
15
\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5})^2-(\sqrt{3})^2}=a+b\sqrt{15}
(
5
)
2
−(
3
)
2
(
5
+
3
)
2
=a+b
15
\frac{5+2\sqrt{15}+3}{5-3}=a+b\sqrt{15}
5−3
5+2
15
+3
=a+b
15
\frac{8+2\sqrt{15}}{2}=a+b\sqrt{15}
2
8+2
15
=a+b
15
4+\sqrt{15}=a+b\sqrt{15}4+
15
=a+b
15
On comparing both sides.
a=4a=4
b=1b=1
The value of (a+b)a is
(a+b)a=(4+1)4=5\times 4=20(a+b)a=(4+1)4=5×4=20
Therefore the value of (a+b)a is 20.