Math, asked by guestid651, 1 month ago

please solve it and ​

Attachments:

Answers

Answered by meghakharbikar05
4

Step-by-step explanation:

The value of (a+b)a is 20

The given equation is

\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+b\sqrt{15}

5

3

5

+

3

=a+b

15

\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=a+b\sqrt{15}

5

3

5

+

3

×

5

+

3

5

+

3

=a+b

15

\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5})^2-(\sqrt{3})^2}=a+b\sqrt{15}

(

5

)

2

−(

3

)

2

(

5

+

3

)

2

=a+b

15

\frac{5+2\sqrt{15}+3}{5-3}=a+b\sqrt{15}

5−3

5+2

15

+3

=a+b

15

\frac{8+2\sqrt{15}}{2}=a+b\sqrt{15}

2

8+2

15

=a+b

15

4+\sqrt{15}=a+b\sqrt{15}4+

15

=a+b

15

On comparing both sides.

a=4a=4

b=1b=1

The value of (a+b)a is

(a+b)a=(4+1)4=5\times 4=20(a+b)a=(4+1)4=5×4=20

Therefore the value of (a+b)a is 20.

Answered by DeeznutzUwU
2

       \underline{\bold{Answer:}}

       a= 4 \text{ and }b = 1

       \underline{\bold{Step-by-step-explaination:}}

       \text{The given expression is: }\dfrac{\sqrt5 + \sqrt3}{\sqrt5 - \sqrt3} = a + b\sqrt{15}

       \text{Taking L.H.S}

\implies \dfrac{\sqrt5 + \sqrt3}{\sqrt5 - \sqrt3}

       \text{Multiplying and dividing by }(\sqrt5+\sqrt3)

 \implies \dfrac{\sqrt5 + \sqrt3}{\sqrt5 - \sqrt3}\text{ x }\dfrac{\sqrt5+\sqrt3}{\sqrt5+\sqrt3}

       \text{We know that, }(a+b)(a-b) = a^{2} - b^{2}      

\implies \dfrac{(\sqrt5 + \sqrt3)^{2} }{(\sqrt5)^{2}  - (\sqrt3)^{2} }

       \text{Simplifying...}

\implies \dfrac{(\sqrt5 + \sqrt3)^{2} }{5  - 3}

       \text{We know that, }(a+b)^{2} = a^{2} + b^{2} + 2ab

\implies \dfrac{(\sqrt5)^{2} + (\sqrt3)^{2} + 2(\sqrt5)(\sqrt3) }{5  - 3}

       \text{Simplifying...}

\implies \dfrac{5 + 3 + 2\sqrt{15}}{2}

       \text{Simplifying...}

\implies \dfrac{8 + 2\sqrt{15}}{2}

       \text{Taking 2 common in numerator and simplifying...}

\implies 4+\sqrt{15}

       \text{Now comparing with R.H.S}

\implies 4+\sqrt{15} = a + b\sqrt{15}

  \therefore \text{ }\text{ }\boxed{a= 4 \text{ and }b = 1}

Similar questions