Math, asked by mesybaboo, 9 months ago

please solve it as soon as possible​

Attachments:

Answers

Answered by dikshika26
1

these are your answers dear

mark as brainlist

Attachments:
Answered by anbshaik00
0

Step-by-step explanation:

(1)

 \frac{1}{1 +  \sqrt{2}  +  \sqrt{3} }  =  \frac{1 \times (1 - ( \sqrt{2}  +  \sqrt{3} ))}{(1 +  \sqrt{2} +  \sqrt{3} )(1 - ( \sqrt{2} +  \sqrt{3} ))  }

 =  \frac{1 -  \sqrt{2}  -  \sqrt{3} }{1 - (2 + 3 + 2 \sqrt{6}) }

(simplifying the denominator)

 =  \frac{1 -  \sqrt{2} - 3 }{2 \sqrt{6} - 4 }  =  \frac{(1 -  \sqrt{2}  -  \sqrt{3})(2 \sqrt{6}  + 4) }{(2 \sqrt{6 }+ 4 )(2 \sqrt{6} - 4) }

 \frac{2 \sqrt{6} - 2 \sqrt{12}  - 2 \sqrt{18}    + 4 - 4 \sqrt{2}  - 4 \sqrt{3} }{20}

 =  \frac{ \sqrt{6}  -  \sqrt{12}  -  \sqrt{18}  + 2  - 2 \sqrt{2} - 2 \sqrt{3}  } {10}

(2)

 \frac{1}{ \sqrt{2}  +  \sqrt{3} +  \sqrt{5}  }  =  \frac{ \sqrt{2}  -  \sqrt{3}  -  \sqrt{5} }{2 \sqrt{15} - 6 }

 \frac{1}{ \sqrt{2}  +  \sqrt{3} +  \sqrt{5}  }  =  \frac{ \sqrt{2}  -  \sqrt{3}  -  \sqrt{5} }{2 \sqrt{15} - 6 }  =  \frac{ (\sqrt{2}  -  \sqrt{3}  -  \sqrt{5})(2 \sqrt{15}   + 6)}{54}

HOPE it HELPS so PLEASE MARK me BRAINLIEST and follow me

Similar questions