Physics, asked by Anonymous, 10 months ago

Please solve it ASAP​

Attachments:

Answers

Answered by FIREBIRD
13

Explanation:

x _{1} \:  \:  \:  \: t_{1} \:  \:  \:  \: v_{1} \\  \\  \\ x _{2} \:  \:  \:  \: t_{2} \:  \:  \:  \: v_{2} \\  \\  \\ x _{3} \:  \:  \:  \: t_{3} \:  \:  \:  \: v_{3} \\  \\  \\ v_{2} = v_{1} + a(t_{2} - t_{1}) \\  \\  \\ v_{3} = v_{1} + a(t_{3} - t_{1}) \\  \\  \\ ((x _{2} - x _{1}) = v _{1}(t _{2} - t _{1}) +  \dfrac{1}{2} a(t _{2} - t _{1})^{2} ) \times (t _{3} - t _{1}) \\  \\  \\ ((x _{3} - x _{1}) = v _{1}(t _{3} - t _{1}) +  \dfrac{1}{2} a(t _{3} - t _{1})^{2} ) \times (t _{2} - t _{1}) \\  \\  \\ substituting \\  \\  \\ (x _{2} - x _{1})   (t _{3} - t _{1})  = \dfrac{1}{2} a(t _{3} - t _{1})(t _{2} - t _{1})(t _{2} - t _{1} - t _{3} + t _{1}) - (x _{3} - x_{1})(t _{2} - t _{2}) \\  \\  \\ a = 2 \dfrac{((x_{2}  - x _{1})(t _{3} - t _{1}) - (x_{3} - x _{1})(t_{2} - t _{1}))}{(t _{2} - t_{3}) (t _{3} - t_{1})( t _{2} -t _{1})}  \\  \\  \\ a = 2 (\dfrac{(x_{2}  - x _{3}) t _{1}  +  (x_{3} - x _{1})t_{2} + (x_{1} - x _{3} )t_{3}   }{(t _{2} - t_{3}) (t _{3} - t_{1})( t _{1} -t _{2})} )

Similar questions