please solve it asap with proper explanation
Answers
Step-by-step explanation:
Given :-
Sin³ θ Cos (3θ) + Cos³ θ Sin ( 3θ) = 3/8
To find :-
Find the value of Sin (4θ) ?
Solution :-
Given that :
Sin³ θ Cos (3θ) + Cos³ θ Sin ( 3θ) = 3/8
We know that
Cos 3θ = 4 Cos³ θ - 3 Cos θ
Sin 3θ = 3 Sin θ - 4 Sin³ θ
On Substituting these formulae in the given equation then
=>Sin³θ(4Cos³θ-3Cosθ)+Cos³θ(3Sinθ-4Sin³θ) = 3/8
=> 4Sin³θCos³θ- 3Sin³θCosθ +3Cos³θSinθ -4Sin³θCos³θ =3/8
=>(4Sin³θCos³θ-4Sin³θCos³θ) -3Sin³θCosθ +3Cos³θSinθ = 3/8
=> 0- 3Sin³θCosθ +3Cos³θSinθ = 3/8
=> - 3Sin³θCosθ +3Cos³θSinθ = 3/8
=> 3Cos³θSinθ - 3Sin³θCosθ = 3/8
=> 3( Cos³θSinθ - Sin³θCosθ) = 3/8
=> Cos³θSinθ - Sin³θCosθ = 3/(8×3)
=> Cos³θSinθ - Sin³θCosθ = 1/8
=> CosθSinθ ( Cos²θ- Sin²θ) = 1/8
We know that Cos²θ - Sin²θ = Cos 2θ
=> CosθSinθ( Cos 2θ) = 1/8
On multiplying with 2 both sides then
=> 2CosθSinθ( Cos 2θ) = 2×(1/8)
=> 2CosθSinθ( Cos 2θ) = 2/8
=> 2CosθSinθ( Cos 2θ) = 1/4
We know that
Sin 2A = 2 Sin A Cos A
=> (Sin2θ)( Cos 2θ) = 1/4
On multiplying with 2 both sides again then
=> 2[(Sin2θ)( Cos 2θ)] = 2×(1/4)
=> Sin 2(2θ) = 2/4
=> Sin 4θ = 1/2
Answer:-
The value of Sin 4θ for the given problem is 1/2
Used formulae:-
- Cos 3θ = 4 Cos³ θ - 3 Cos θ
- Sin 3θ = 3 Sin θ - 4 Sin³ θ
- Sin 2A = 2 Sin A Cos A
- Cos²θ - Sin²θ = Cos 2θ