please solve it , don't give useless answers please .
Answers
Step-by-step explanation:
i) Given,
a cos theta - b sin theta =c
squaring both sides,
(a cos theta - b sin theta)^2 = c^2
a^2cos^2 theta+ b^2 sin^2 theta - 2ab cos theta. sin theta = c^2
a^2 cos^2 theta + b^2 sin^2 theta - c^2
= 2ab cos theta.sin theta .................(1)
Now squaring LHS,
(a sin theta + b cos theta)^2
= a^2 sin^2 theta+b^2 cos^2 theta+2 ab cos theta.sin theta
(a sin theta+ b cos theta)^2
= a^2 sin^2 theta+b^2 cos^2 theta +( a^2 cos^2 theta+ b^2 sin^2 theta -c^2)
[from equation 1]
(a sin theta + b cos theta)^2
= a^2 (sin^2 theta+cos^2 theta)+ b^2(sin^2 theta+cos^2 theta) - c^2 [As sin^2 theta+cos^2 theta= 1]
(a sin theta + b cos theta)^2
= a^2+b^2-c^2
(a sin theta+ b cos theta) = ±√a^2 + b^2 - c^2
so, LHS= RHS
ii) Given,
tan^2 theta = 1-e^2 ........... (1)
[sec^2 theta= 1+tan^2 theta]
sec^2 theta= (1+1-e^2) [from 1]
sec^2 theta=(2-e^2)
sec theta=√(2-e^2) = (2-e^2)^1/2
Now taking LHS,
sec theta + tan^3 theta.cosec theta
= sec theta + tan^2 theta. tan theta.cosec theta
= sec theta + tan^2 theta.sec theta (As tan theta.cosec theta= sec theta)
= sec theta (1+tan^2 theta) ..............(2)
Putting the values in (2),
= (2-e^2)^1/2 . (2-e^2)^1
= (2-e^2)^3/2 [If bases are same in multiplication then powers are added]
so, LHS = RHS