Math, asked by TANU81, 10 months ago

Please solve it..... Don't spam

Attachments:

Answers

Answered by BrainlyPopularman
32

GIVEN :

 \\  \:  \: { \bold{I=  \int^2 _{-2}  \left(  {x}^{3} \cos \dfrac{x}{2} + \dfrac{1}{2} \right) \sqrt{4 -  {x}^{2} }.dx }}\\

TO FIND :

• Value of 'I' = ?

SOLUTION :

 \\  \:  \: { \bold{I=  \int^2 _{-2}  \left(  {x}^{3} \cos \dfrac{x}{2} + \dfrac{1}{2} \right) \sqrt{4 -  {x}^{2} }.dx \:\:\:----eq.(1)}}\\

• We know that –

 \\  \:  \:  \dashrightarrow \:  \: { \bold{ \int^b _{a} f(x).dx =\int^b _{a} f(a + b - x).dx }}\\

• So that –

 \\ \implies  \:  \: { \bold{I=  \int^2 _{-2}  \left(  {( - x)}^{3} \cos \dfrac{ - x}{2}  +  \dfrac{1}{2}  \right) \sqrt{4 -  {( - x)}^{2} }.dx }}\\

 \\ \implies  \:  \: { \bold{I=  \int^2 _{-2}  \left( -{ x}^{3} \cos \dfrac{x}{2}  +  \dfrac{1}{2}  \right) \sqrt{4 -  {x}^{2} }.dx \:\:\:----eq.(2)}}\\

• Now Add eq.(1) & eq.(2) –

 \\ \implies  \:  \: { \bold{2I=  \int^2 _{-2}  \left \{ \left( -{ x}^{3} \cos \dfrac{x}{2}  +  \dfrac{1}{2}  \right) \sqrt{4 -  {x}^{2} }  +  \left(  {x}^{3} \cos \dfrac{x}{2} + \dfrac{1}{2} \right) \sqrt{4 -  {x}^{2} }\right\}.dx}}\\

 \\ \implies  \:  \: { \bold{2I=  \int^2 _{-2}   \left( \dfrac{1}{2}   +  \dfrac{1}{2}  \right) \sqrt{4 -  {x}^{2} }  .dx}}\\

 \\ \implies  \:  \: { \bold{2I=  \int^2 _{-2}  \sqrt{4 -  {x}^{2} }  .dx}}\\

• Using property –

 \\ \dashrightarrow  \:  \: { \bold{\int^a _{-a}  f(x).dx =2\int^a _{0}  f(x).dx \:  \:  \:  \:  \:  \:[ f(x) = even \:  \: function]}}\\

• So –

 \\ \implies  \:  \: { \bold{2I=  2\int^2 _{0}  \sqrt{4 -  {x}^{2} }  .dx}}\\

 \\ \implies  \:  \: { \bold{I=  \int^2 _{0}  \sqrt{4 -  {x}^{2} }  .dx}}\\

• Now put x = 2  \sin( \theta)

 \\ \implies  \:  \: { \bold{x = 2 \sin( \theta)}}  \\

 \\ \implies  \:  \: { \bold{dx = 2 \cos( \theta).d \theta}}  \\

 \\ \implies  \:  \: { \bold{I=  \int^  \frac{\pi}{2}  _{0}  \sqrt{4 -  {(2 \sin \theta) }^{2} }(2 \cos\theta).d \theta}}\\

 \\ \implies  \:  \: { \bold{I=  \int^  \frac{\pi}{2}  _{0}  \sqrt{4 -  {4 \sin^{2}  \theta} }(2 \cos\theta).d \theta}}\\

 \\ \implies  \:  \: { \bold{I=  \int^  \frac{\pi}{2}  _{0} 2 \sqrt{1 -  {\sin^{2}  \theta} }(2 \cos\theta).d \theta}}\\

 \\ \implies  \:  \: { \bold{I= 2 \int^  \frac{\pi}{2}  _{0}  2\cos^{2} \theta.d \theta}}\\

 \\ \implies  \:  \: { \bold{I= 2 \int^  \frac{\pi}{2}  _{0}  1 +  \cos(2 \theta).d \theta}}\\

 \\ \implies  \:  \: { \bold{I= 2  \left[ \theta+  \dfrac{ \sin(2 \theta)}{2} \right]^  \frac{\pi}{2}  _{0}  }}\\

 \\ \implies  \:  \: { \bold{I= 2  \left[ \left( \dfrac{\pi}{2}  - 0 \right)+  \dfrac{ \sin(2   \times \dfrac{\pi}{2})}{2}  -  \sin(0) \right]}}\\

 \\ \implies  \:  \: { \bold{I= 2  \left[ \left( \dfrac{\pi}{2}   \right)+  \dfrac{ \sin( \pi)}{2}  - 0 \right]}}\\

 \\ \implies  \:  \: { \bold{I= 2  \left[  \dfrac{\pi}{2}   \right]}}\\

 \\ \implies  \large \: \:{ \boxed { \bold{I=  \pi}}}\\


Anonymous: Perfect :claps:
shadowsabers03: Awesome!
Answered by Saras0000
0

Answer:

Hey moderator!

I am really very very sorry that I am spamming..but can u plz make my any answer verified ?

Really, I will be very glad and thankful of urs.

Hope it helps you...mark as brainliest...plz follow

me

Do drop few thanks on my few answers also

Similar questions