Math, asked by Anonymous, 11 days ago

Please solve it
Don't spam​

Attachments:

Answers

Answered by hukam0685
9

Step-by-step explanation:

Given:

 \frac{ {x}^{2} }{16}  +  \frac{9}{ {x}^{2} }  = 2( \frac{x}{4}  -  \frac{3}{x} ) +  \frac{1}{2}  \\

To find: Value of x

Solution:

Formula used:

\boxed{( {x - y})^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy} \\

Subtract 2(x/4)(3/x) from both sides,so that complete square will form in LHS

\frac{ {x}^{2} }{ {(4)}^{2} }  +  \frac{( {3)}^{2} }{ {x}^{2} }  - 2. \frac{x}{4}. \frac{3}{x}   = 2( \frac{x}{4}  -  \frac{3}{x} ) +  \frac{1}{2}   - 2. \frac{x}{4}. \frac{3}{x}   \\

( { \frac{x}{4} }) ^{2} +( { \frac{3}{x} }) ^{2} - 2. \frac{x}{4}. \frac{3}{x}   = 2( \frac{x}{4}  -  \frac{3}{x} ) +  \frac{1}{2}   -  \frac{ \cancel x}{2}. \frac{3}{ \cancel x} \\  \\ ( { \frac{x}{4} -  \frac{3}{x}  })  ^{2}  =  2( \frac{x}{4}  -  \frac{3}{x} )  - 1 \\  \\ ( { \frac{x}{4} -  \frac{3}{x}  })  ^{2}   -  2( \frac{x}{4}  -  \frac{3}{x} )   +  1 = 0 \\

its a quadratic equation in x/4-3/x

Let x/4-3/x =a

 {a}^{2}   - 2a + 1 = 0 \\  \\  {a}^{2}  - a - a + 1 = 0 \\  \\ a(a - 1) - 1(a - 1) = 0 \\  \\ (a - 1) (a - 1)= 0 \\  \\ a - 1 = 0 \\  \\ \bold{a = 1} \\

Thus,

 \frac{x}{4}  -  \frac{3}{x}  = 1 \\  \\  \frac{ {x}^{2} - 12 }{4x}  = 1 \\  \\  {x}^{2}  - 12 = 4x \\  \\  {x}^{2}  - 4x - 12 = 0 \\  \\  {x}^{2}  - 6x + 2x - 12 = 0 \\  \\ x(x - 6) + 2(x - 6) = 0 \\  \\ (x - 6)(x + 2) = 0 \\  \\ x - 6 = 0 \\  \\ x = 6 \\  \\ or \\  \\ x + 2 = 0 \\  \\ x =  - 2 \\  \\

Final answer:

\bold{x = 6} \\ \bold{x =  - 2 }\\

Hope it helps you.

To learn more on brainly:

Find the value of 2(a²+b²) if (a+b)=3 and (a-b)=2. Please answer quick I will surely mark u brainliest.

https://brainly.in/question/47096731

Answered by ItzSavageGirlIsha
8

Answer:

hii

Step-by-step explanation:

ur name

and thanks for giving me so many thanks

I am Isha malvia

can I call you as friends

Attachments:
Similar questions