Math, asked by subham3226, 1 year ago

please solve it emergeny i will mark you brainlist

Attachments:

Answers

Answered by abdul143
2

 <b>  <tt>
we know the sum of angles of a triangle is equal to 180°.

Given:
 \angle \: PQS = 50° and   \: \angle \: PRT = 30° \\  \\  \tt{we \:  also  \: know \:  that \:  PT \:  is \:  a  \: bisector }  \\ \tt{ of \angle \:  PQR}<br />

In ∆ PQR.

 \angle \: PQS+ \angle \:  PRT + \angle \: PQR = 180° \\  \\  \rightarrow50° + 30° +  \angle \: PQR \:  = 180°  \\  \\  \rightarrow80°  + \angle \: PQR  = 180°  \\  \\ \rightarrow \angle \: PQR  \:  = 180°  - 80°  \\  \\   \rightarrow\angle \: PQR  \:  = 100° \\   \\
then, we know the PT is a angle bisector angle PQR.

so, it divides the angle into Half's.

=&gt;  \angle \: RPT +  \angle \: TPQ = 100<br /><br /> \\  \\ we \: can \: consider \: them \: be \: x \\  \\  =&gt; x + x =100 \\  \\ <br /><br />=&gt; 2X= 100 \\  \\ <br /><br />=&gt; X =  \frac{100}{2} . \\  \\  =  &gt; x = 50.

now, In ∆ PQT

PS is the bisector of angle QPT .it divides the angle into to half then,

we know angle QPT is equal to 50.

now,

 \angle QPS  +  \angle \: SPT =  \angle \: QPT \\  \\  \rightarrow \:\angle QPS  +  \angle \: SPT \:  = 50 \\  \\ \tiny \tt{let \: them \: both \: be \: x  \: beocz \:PS  \: is \: bisector \angle \:  QPT.}\:   \\  \\ \rightarrow  x + x = 50 \\  \\ \rightarrow2x = 50 \\  \\ \rightarrow x =   \frac{50}{2}  \\  \\ \rightarrow \: x = 25. \\  \\ so. \angle \: SPT = 25 \:  \:   \red{\underline {\underline{{ \tt{solved}}}}}



Attachments:
Similar questions