Math, asked by GangsterTeddy, 5 months ago

please solve it fast​

Attachments:

Steph0303: Differential Equations :)
BrainlyIAS: Can you solve it ? @steph0303
Steph0303: Yes
BrainlyIAS: Ok fine ! Proceed !
BrainlyIAS: Question in the image is incomplete , actually we need to prove it , when y= s1e^axcosbx + c2e^ax sin bx

Answers

Answered by shadowsabers03
21

Consider,

\longrightarrow y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)

for some arbitrary constants c_1 and c_2.

Multiplying \left(a^2+b^2\right) to both sides,

\longrightarrow (a^2+b^2)y=(a^2+b^2)c_1e^{ax}\cos(bx)+(a^2+b^2)c_2e^{ax}\sin(bx)

\longrightarrow (a^2+b^2)y=(a^2c_1+b^2c_1)e^{ax}\cos(bx)+(a^2c_2+b^2c_2)e^{ax}\sin(bx)\quad\quad\dots(1)

Differentiating y wrt x,

\longrightarrow y_1=\dfrac{d}{dx}\left[c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)\right]

\longrightarrow y_1=c_1\left[ae^{ax}\cos(bx)-be^{ax}\sin(bx)\right]+c_2\left[ae^{ax}\sin(bx)+be^{ax}\cos(bx)\right]

\longrightarrow y_1=\left(ac_1+bc_2\right)e^{ax}\cos(bx)+\left(ac_2-bc_1\right)e^{ax}\sin(bx)

Multiplying 2a to both sides,

\longrightarrow 2ay_1=\left(2a^2c_1+2abc_2\right)e^{ax}\cos(bx)+\left(2a^2c_2-2abc_1\right)e^{ax}\sin(bx)\quad\quad\dots(2)

Differentiating y_1 wrt x,

\longrightarrow y_2=\dfrac{d}{dx}\left[\left(ac_1+bc_2\right)e^{ax}\cos(bx)+\left(ac_2-bc_1\right)e^{ax}\sin(bx)\right]

\begin{aligned}\longrightarrow y_2&=\left(ac_1+bc_2\right)\left[ae^{ax}\cos(bx)-be^{ax}\sin(bx)\right]\\&+\left(ac_2-bc_1\right)\left[ae^{ax}\sin(bx)+be^{ax}\cos(bx)\right]\end{aligned}

\begin{aligned}\longrightarrow y_2&=\left(a^2c_1+2abc_2-b^2c_1\right)e^{ax}\cos(bx)\\&+\left(a^2c_2-2abc_1-b^2c_2\right)e^{ax}\sin(bx)\quad\quad\dots(3)\end{aligned}

Without loss of generality, let,

  • A=e^{ax}\cos(bx)
  • B=e^{ax}\sin(bx)

Then (1) becomes,

\longrightarrow (a^2+b^2)y=(a^2c_1+b^2c_1)A+(a^2c_2+b^2c_2)B\quad\quad\dots(1)'

and (2) becomes,

\longrightarrow 2ay_1=\left(2a^2c_1+2abc_2\right)A+\left(2a^2c_2-2abc_1\right)B\quad\quad\dots(2)'

and (3) becomes,

\longrightarrow y_2=\left(a^2c_1+2abc_2-b^2c_1\right)A+\left(a^2c_2-2abc_1-b^2c_2\right)B\quad\quad\dots(3)'

Now, (3)'-(2)'+(1)' gives,

\begin{aligned}\longrightarrow\ \ &y_2-2ay_1+(a^2+b^2)y\\=\ \ &\left(a^2c_1+2abc_2-b^2c_1-2a^2c_1-2abc_2+a^2c_1+b^2c_1\right)A\\+\ \ &\left(a^2c_2-2abc_1-b^2c_2-2a^2c_2+2abc_1+a^2c_2+b^2c_2\right)B\end{aligned}

\longrightarrow\underline{\underline{y_2-2ay_1+(a^2+b^2)y=0}}

Hence Verified!


BrainlyIAS: Nice work :)
Answered by llICandyCaneMissyIII
1

Answer:

Of course I will be your friend dear, and someone also broke my heart sis

btw , what is your name dear friend?☺️☺️☺️

Similar questions