Math, asked by himanshi1236, 1 month ago

please solve it fast​

Attachments:

Answers

Answered by rg2888115
0

Answer:

1

Give me like and best rating and follow for more questions and brainlisets

Answered by ravi2303kumar
0

Step-by-step explanation:

To prove :  \frac{1+tan\alpha }{1-tan\alpha} - \frac{{1-tan\alpha} }{{1+tan\alpha} } = \frac{4sin\alpha cos\alpha }{1-2sin^2\alpha }

LHS =  \frac{1+tan\alpha }{1-tan\alpha} - \frac{{1-tan\alpha} }{{1+tan\alpha} }

=  \frac{(1+tan\alpha)^2 - (1-tan\alpha)^2 }{1^2-tan^2\alpha}

= 4(1)(tanα) / 1-tan²α

= 4* \frac{\frac{sin\alpha}{cos\alpha} }{1- (\frac{sin^2\alpha}{cos^2\alpha}) }         [ ∵ tan\alpha = \frac{sin\alpha}{cos\alpha} ]

= 4* \frac{\frac{sin\alpha}{cos\alpha} }{(\frac{cos^2\alpha - sin^2\alpha}{cos^2\alpha}) }

= 4 * \frac{sin\alpha}{cos\alpha} * \frac{cos^2\alpha}{cos^2\alpha - sin^2\alpha}

= 4 *  \frac{sin\alpha  * cos\alpha}{cos^2\alpha - sin^2\alpha}

= \frac{4sin\alpha cos\alpha }{1-2sin^2\alpha }                 [ ∵ cos^2\alpha - sin^2\alpha = 1-2sin^2\alpha ]

= RHS

=> LHS = RHS

Hence proved

Similar questions