Math, asked by jaideepsohal123, 2 months ago

please solve it fast ​

Attachments:

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{ {( {x}^{2} -  {y}^{2})}^{3}  +  {( {y}^{2} -  {z}^{2})}^{3}  +  {( {z}^{2} -  {x}^{2})}^{3} }{ {(x - y)}^{3}  +  {(y - z)}^{3}  +  {(z - x)}^{3} }

Consider, Numerator

\rm :\longmapsto\: {( {x}^{2} -  {y}^{2})}^{3}  +  {( {y}^{2} -  {z}^{2})}^{3}  +  {( {z}^{2} -  {x}^{2})}^{3}

Let assume that

\rm :\longmapsto\:a =  {x}^{2} -  {y}^{2}

\rm :\longmapsto\:b =  {y}^{2} -  {z}^{2}

\rm :\longmapsto\:c =  {z}^{2} -  {x}^{2}

On adding above 3 equations,

\rm :\longmapsto\:a + b + c =  {x}^{2} -  {y}^{2} +  {y}^{2} -  {z}^{2} +  {z}^{2} -  {x}^{2}

\rm :\longmapsto\:a + b + c = 0

\rm \implies\: {a}^{3} +  {b}^{3} +  {c}^{3}  = 3abc

On substitute the values of a, b and c,

\rm :\longmapsto\: {( {x}^{2} -  {y}^{2})}^{3}  +  {( {y}^{2} -  {z}^{2})}^{3}  +  {( {z}^{2} -  {x}^{2})}^{3}

\rm \:  =  \:  \: \: 3{( {x}^{2} -  {y}^{2}}){( {y}^{2} -  {z}^{2})} {( {z}^{2} -  {x}^{2})}

Consider, denominator

\rm :\longmapsto\: {(x - y)}^{3} +  {(y - z)}^{3} +  {(z - x)}^{3}

Let assume that

\rm :\longmapsto\:a = x - y

\rm :\longmapsto\:b = y - z

\rm :\longmapsto\:c = z - x

On adding above 3 equations,

\rm :\longmapsto\:a + b + c = x - y + y - z + z - x

\rm :\longmapsto\:a + b + c = 0

\rm \implies\: {a}^{3} +  {b}^{3} +  {c}^{3}  = 3abc

On substituting the values of a, b, c

\rm :\longmapsto\: {(x - y)}^{3} +  {(y - z)}^{3} +  {(z - x)}^{3}

\rm \:  =  \:  \: 3(x - y)(y - z)(z - x)

Consider,

\rm :\longmapsto\:\dfrac{ {( {x}^{2} -  {y}^{2})}^{3}  +  {( {y}^{2} -  {z}^{2})}^{3}  +  {( {z}^{2} -  {x}^{2})}^{3} }{ {(x - y)}^{3}  +  {(y - z)}^{3}  +  {(z - x)}^{3} }

\rm \:  =  \:  \: \dfrac{3( {x}^{2}  -  {y}^{2} )( {y}^{2}  -  {z}^{2} )( {z}^{2}  -  {x}^{2} )}{3(x - y)(y - z)(z - x)}

\rm \:  =  \:  \: \dfrac{(x - y)(x + y)(y + z)(y - z)(z - x)(z + x)}{(x - y)(y - z)(z - x)}

\rm \:  =  \:  \: (x + y)(y + z)(z + x)

More to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions