Math, asked by raghavarora9414, 1 day ago

please solve it fast ​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ permissible \: values \: of \: x \\  \\ given \: that \\ x∈[ - 2\pi,3\pi] = [4\pi,3\pi] \\  \\ 3 \sqrt{3} ,2 \sqrt{2} .sin {}^{2} x,sin \: x \: are \: i n\: GP \\  \\ (2 \sqrt{2} .sin {}^{2} x) {}^{2}  = 3 \sqrt{3} .sin \: x \\ 8.sin {}^{4} x = 3 \sqrt{ 3} .sin \: x \\ 8sin {}^{4} x - 3 \sqrt{3} .sin \: x = 0 \\  \\ sin \: x(8sin {}^{3} x - 3 \sqrt{3} ) = 0 \\  \\ sin \: x = 0 \:  \: or \:  \: sin  {}^{3}  x =  \frac{3 \sqrt{3} }{8}  \\  \\ sin \: x = 0 \:  \: or \:  \: sin \: x =  \frac{2}{ \sqrt[3]{3 \sqrt{3} } }  \\  \\ but \: as \: x \: lies \: between \: \\  quadrant \: 3\: and \: 4 \\ its \: range \: should \: not \: include \\  \: positive \: ratios \:  \\  \\ hence \: then \\ sin \: x =  \frac{2}{ \sqrt[3]{3 \sqrt{3} } }  \: is \: rejected \\  \\ sin \: x = 0 \\  \\ x = 4\pi \: or \: x = 3\pi \\ ie \: would \: lie \: on \: x - axis \\  \\ no \: of \: solutions = 2

Similar questions