Please solve it fast.........
Attachments:
Answers
Answered by
3
Given Quadratic equation is 3x^2 + 2kx + 27 = 0.
Here, a = 3, b = 2k, c = 27.
We know that for real and equal roots, we need to solve the value of k such that Δ = 0.
⇒ b^2 - 4ac = 0
⇒ (2k)^2 - 4(3)(27) = 0
⇒ 4k^2 - 324 = 0
⇒ k^2 - 81 = 0
⇒ k^2 = 81
⇒ k = +9,-9.
Hope it helps!
Answered by
5
hey mate!
3x^2+2x+27
real and equal roots
D=0
D= underroot b^2-4ac
D= underroot (2k)^2-4ac
D= underroot 4k ^2 - 324
so,
underroot 4k^2 - 324 =0
4k^2 -324=0
k^2 =324/4
k^2= 81
k= +9 or k = -9
for real and equal roots.
# Phoenix
3x^2+2x+27
real and equal roots
D=0
D= underroot b^2-4ac
D= underroot (2k)^2-4ac
D= underroot 4k ^2 - 324
so,
underroot 4k^2 - 324 =0
4k^2 -324=0
k^2 =324/4
k^2= 81
k= +9 or k = -9
for real and equal roots.
# Phoenix
Anonymous:
mark it as brainliest
Similar questions