Math, asked by NileshMSD, 11 months ago

Please solve it fast. I will mark ka brainliest​

Attachments:

Answers

Answered by RDalal
2

Answer:

i think it will really help u

Attachments:
Answered by Anonymous
20

{\boxed{\mathtt{\green{To\:Find}}}}

If \:  \sin( \theta)  +  \csc( \theta)  = 2 \\

then \:  { \sin( \theta) }^{15}  -  { \csc( \theta) }^{15}  + 4 \sin( \theta) . \csc( \theta)  \\

{\boxed{\mathtt{\green{Solution}}}}

We have given sin a + cosec a = 2

⇢ Cosec is reciprocal of Sine .So

 \implies \:  \sin( \theta)  +  \frac{1}{ \sin( \theta) }  = 2 \\

 \implies \:  \frac{ { \sin( \theta)  + 1}^{2} }{ \sin( \theta) }  \:  =  \: 2 \\

 \implies \:  { \sin( \theta) }^{2}  + 1 \:  =  \: 2 \:  \sin( \theta)  \\

 \implies \:  { \sin( \theta) }^{2}  - 2 \:  \sin( \theta)  \:  + 1 \:  =  \: 0

 \implies \: ( { \sin( \theta) - 1) }^{2}  = 0 \\

 \boxed {\implies \:  \sin( \theta)  \:  =  \: 1}

Now we have to put the value of sine in the question .

 {(1)}^{15}  \:  -  \frac{1}{( {1)}^{15} }  \:  + 4(1 \times  \frac{1}{1} ) \\

 \implies \: 1 - 1 + 4 \\

{ \boxed{ \mathtt{ \implies \: 4 \: is \: the \: answer}}}

Similar questions