Math, asked by palak2929, 3 months ago

please solve it faster and right there is my exam today.​

Attachments:

Answers

Answered by asmita2085
2

Answer:

u can see in the pic

Step-by-step explanation:

hope it'll help you

Attachments:
Answered by anindyaadhikari13
20

Required Answer:-

Given To Simplify:

  •  \sf \dfrac{ {x}^{^{7}/_{2}} \times  \sqrt{y}  }{ {x}^{{}^{5}/_{2}} \times  \sqrt{ {y}^{3} }  }

Solution:

Given that,

 \sf = \dfrac{ {x}^{^{7}/_{2}} \times  \sqrt{y}  }{ {x}^{{}^{5}/_{2}} \times  \sqrt{ {y}^{3} }  }

 \sf = \dfrac{ {x}^{^{7}/_{2} -^{5}/_{2}} \times  \sqrt{y}  }{\sqrt{ {y}^{3} }  } \:  \:  \:  \blue{ \bigg( \dfrac{ {x}^{y} }{ {x}^{z} } =  {x}^{y - z}   \bigg)}

 \sf = \dfrac{ {x}^{^{2}/_{2}} \times  \sqrt{y}  }{\sqrt{ {y}^{3} }  }

 \sf = \dfrac{ {x}^{1} \times  \sqrt{y}  }{\sqrt{ {y}^{3} }  }

 \sf = \dfrac{ {x}^{1} \times {y}^{^{1}/_{2}} }{({y}^{3})^{{}^{1}/_{2}}} \:  \:  \:  \blue{ \bigg( \sqrt[n]{y} =  {y}^{^{1}/_{n}}\bigg)}

 \sf = \dfrac{ {x}^{1} \times {y}^{^{1}/_{2}} }{{y}^{^{3}/_{2}}} \:  \:  \:  \blue{ \bigg( {( {x}^{y} )}^{z} =  {x}^{yz}  \bigg)}

 \sf = {x}^{1} \times {y}^{^{1}/_{2} -{}^{3}/_{2}} \:  \:  \:  \blue{ \bigg( \dfrac{ {x}^{y} }{ {x}^{z} }  =  {x}^{y - z} \bigg)}

 \sf = {x}^{1} \times {y}^{^{ - 2}/_{2}}

 \sf = {x}^{1} \times {y}^{ - 1}

 \sf = \dfrac{x}{y}

Therefore, the result after evaluating the expression is x/y.

Answer:

  • x/y.

•••♪

Similar questions