Math, asked by sujeetgund, 10 months ago

Please solve it faster as possible.. satisfied answer will be marked as brainliest... Don't spam..

Attachments:

Answers

Answered by niishaa
3

Answer:

see attachment :)

Step-by-step explanation:

Hope this will help you :)

Attachments:
Answered by tejasbenibagde76
1

Answer:

To prove,

  \frac{1 + sinx}{cosx}  =  \frac{1 + sinx + cosx}{1 + cosx - sinx}  \\

Calculations,

RHS =  \frac{1 + cosx + sinx}{1 + cosx - sinx}  \\  =  \frac{1 + cosx + sinx}{1 + cosx - sinx} \times \frac{1 + cosx + sinx}{1 + cosx  +  sinx}  \\  =  \frac{ {(1 + cosx + sinx)}^{2} }{ {(1 + cosx)}^{2} -  {sin}^{2}x  }  \\  =  \frac{1 + 2cosx +  {cos}^{2}x + 2sinx + 2sinxcosx +  {sin}^{2}  x}{1 + 2cosx +  {cos}^{2} x -  {sin}^{2}x }  \\  =  \frac{1 +sinx + cosx + sinxcosx }{cosx(1 + cosx)}  \\  =  \frac{1}{cosx}  +  \frac{1}{1 + sinx}  +  \frac{sinx}{1 + sinx}  \\  =  \frac{1}{cosx}  + 1 \\  =  \frac{1 + sinx}{cosx}  \\  = LHS

hence ,

  \frac{1 + sinx}{cosx}  =  \frac{1 + sinx + cosx}{1 + cosx - sinx}  \\

Similar questions