Math, asked by snehaprajnaindia204, 4 months ago

PLEASE SOLVE IT...

FIND THE LIMITING VALUE ...


¯\_(ツ)_/¯ ¯\_(ツ)_/¯​ ¯\_(ツ)_/¯​
《SPAMMERS STAY AWAY》​

Attachments:

Answers

Answered by Anonymous
18

Solution

We have

 \displaystyle \lim _{ \tt{n \to \infty}}   \tt\frac{ \bigg[1 +  \dfrac{1}{2} +  \dfrac{1}{ {2}^{2} } + ............... +  \dfrac{1}{2^{n} } \bigg ]}{ \bigg[1 +  \dfrac{1}{3}  +  \dfrac{1}{ {3}^{2}  }  + ............... +  \dfrac{1}{ {3}^{n} }  \bigg]}

Now Take

 \tt \to\bigg[1 +  \dfrac{1}{2} +  \dfrac{1}{ {2}^{2} } + ............... +  \dfrac{1}{2^{n} } \bigg]

So this Sequence is GP , We use sum of infinite GP is

 \tt \to S _{n} =  \dfrac{1(1 - r ^{n} )}{1 - r}

Using this formula we get

 \tt \to \: 1  \bigg(\dfrac{1 -   \bigg(\dfrac{1}{2} \bigg)^{n + 1}  }{1 -  \dfrac{1}{2} }  \bigg)

 \tt \to \:  \dfrac{ {2}^{n + 1}  - 1}{ {2}^{n + 1}  \times  \dfrac{1}{2} }  =  \dfrac{ {2}^{n + 1}  - 1}{ {2}^{n + 1}  \times  {2}^{ - 1} }  =  \dfrac{ {2}^{n + 1} - 1 }{ {2}^{n} }

Now take

  \tt\to{\bigg[1 +  \dfrac{1}{3}  +  \dfrac{1}{ {3}^{2}  }  + ............... +  \dfrac{1}{ {3}^{n} }  \bigg]}

So this Sequence is GP , We use sum of infinite GP is

 \tt \to S _{n} =  \dfrac{1(1 - r ^{n} )}{1 - r}

We get

 \tt \to \:  \dfrac{1 \bigg(1 -  \bigg( \dfrac{1}{3} \bigg)^{2n + 1}   \bigg)}{1 -  \dfrac{1}{3} }

 \to \tt \:  \dfrac{ {3}^{n + 1}  - 1}{ {3}^{n + 1}  \times  \dfrac{2}{3} }  =  \dfrac{ {3}^{n + 1}  - 1}{2 \times  {3}^{n} }

Now Put the Value

 \to \displaystyle \lim _{ \tt{n \to \infty}}    \tt\dfrac{  \dfrac{ {2}^{n + 1} - 1 }{ {2}^{n} } }{  \dfrac{ {3}^{n + 1}  - 1}{2 \times  {3}^{n} } }

 \to\displaystyle \lim _{ \tt{n \to \infty}}   \tt\dfrac{2 -  \dfrac{1}{ {2}^{n} } }{ \dfrac{3}{2}  -  \dfrac{1}{2 \times  {3}^{n} } }

 \to\tt\dfrac{2 -  \dfrac{1}{ {2}^{  \infty } } }{ \dfrac{3}{2}  -  \dfrac{1}{2 \times  {3}^{ \infty } } }

 \to\tt\dfrac{2 -   0}{ \dfrac{3}{2}  -  0 } = 2 \times  \dfrac{2}{3}  =  \dfrac{4}{3}

Answer is

 \to \:  \dfrac{4}{3}

Answered by Anonymous
1

Hiiiiii!!!!

Humming bird!

hmmmmmmmmmmm :))

Mai toh theek hu thoda pareshani v h but theek hu :))

Aap toh 12 m bhi 11 m bhi bdhiya h na multi task

hehehe

Acha 143 Kya number h....xd meaning bhi acha h

>-< :))

Mera toh baaki sb theek 11 bhi shuru ho gye aaap btao

Kasie ho??

Maine toh PCM liya prr papa ne optional m History dilwa diya :( history bkwaas h prr Baaki sb acha h ..

Similar questions