Math, asked by Himanshu1982, 11 months ago

please solve it for me​

Attachments:

Answers

Answered by Sharad001
80

Question :-

  \sf{\frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3} } \\  \sf{find \: a \: and \: b \: }

Answer :-

→ a = 11 and b = -6

Solution :-

Taking Left hand side ,

 \rightarrow \:  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{ 3} }  \\ \\  \sf{ multiply \: and \: divided \: by \: 7 - 4 \sqrt{3} } \\  \:  \\  \rightarrow \:  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\   \\  \because  \boxed{ \underline{ \: \sf{{x}^{2} -  {y}^{2}  = (x - y)(x + y)} }}\\  \\  \rightarrow \:  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})  }{ {7}^{2}  -  {(4 \sqrt{ 3} )}^{2} }  \\  \\  \rightarrow \:  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3}  - 8 \times 3 }{49 - 48}  \\  \\  \rightarrow \:  \frac{35 - 24 - 6 \sqrt{3} }{1}  \\  \\  \rightarrow \sf{11 - 6 \sqrt{3}  \:  \:  \:  \:  \: }

now comparing with Right hand side, then we get,

→ a = 11 and B = -6

__________________________

Similar questions