Math, asked by sahusushila108, 2 months ago

please solve it for me and give me full answer. I will thank your answer.​

Attachments:

Answers

Answered by 12thpáìn
264

5:) Express in power with base 2;

\\ \sf  (a)   \: \:  {64}^{ - 4}

\\\sf  (b)  \:  \: ( {128}^{ - 3} ) \times ( {8}^{6} )

\\\sf  (c)   \: \:  {32}^{  4}  \div   {16}^{ - 5}

\\\sf  (d)   \: \:  [(64)³×(-128)⁴]÷ {4}^{ - 5} \\\\

Solution

\\\\\sf  (a)   \: \:  {64}^{ - 4}

\sf    = { ({2}^{6}) }^{ - 4}

\sf    = { ({2}^{6 \times  - 4}) }

\underline{\sf    =  {2}^{ - 24}}  \\  \\  \\

\sf  (b)  \:  \: ( {128}^{ - 3} ) \times ( {8}^{6} )

\sf     = ( {( {2}^{7}}) ^{ - 3} ) \times ( { {2}^{3}) }^{6}

\sf     =  {2}^{ - 21}  \times  {2}^{18}

\sf     =  {2}^{ - 21 + 18}

\underline{\sf     =  {2}^{ - 3}}   \\  \\  \\

\sf  (c)   \: \:  {32}^{  4}  \div   {16}^{ - 5}

\sf  =  ({ {2}^{5} })^{  4}  \div (  { {2}^{4} })^{ - 5}

\sf  =   {2}^{20}   \div  {2}^{ - 20}

\sf  =   {2}^{20 - ( - 20)}

\sf  =   {2}^{20  + 20}

\underline{\sf  =   {2}^{40}}   \\  \\  \\

\sf  (d)   \: \:  [(64)³×(-128)⁴]÷ {4}^{ - 5}

\sf   = [( {2}^{6} )³×( { - 2}^{7} )⁴]÷ ({ {2}^{2} })^{ - 5}

\sf   = [ {2}^{18} × {  - 2}^{28} ]÷  {2}^{ - 10}

\sf   = [ {2}^{18} × {  2}^{28} ]÷  {2}^{ - 10}

\sf   = [ {2}^{18  + 28}  ]÷  {2}^{ - 10}

\sf   = {2}^{46}  ÷  {2}^{ - 10}

\sf   = {2}^{46 - ( - 10)}

\sf   = {2}^{46  + 10}

\underline{\sf   = {2}^{56}}  \\\\\\

\\ \sf  (a)   \: \:  {64}^{ - 4}=\bf{2}^{ - 24}

\\\sf  (b)  \:  \: ( {128}^{ - 3} ) \times ( {8}^{6} )=\bf{2}^{ - 3}

\\\sf  (c)   \: \:  {32}^{  4}  \div   {16}^{ - 5} = \bf  {2}^{40}

\\\sf  (d)   \: \:  [(64)³×(-128)⁴]÷ {4}^{ - 5}=\bf{2}^{56}  \\\\

Answered by badolamamta68
2

all answers are attached in the attachment

Attachments:
Similar questions