please solve it friends.....
Answers
Step-by-step explanation:
Solution:
We have to prove:-
\frac{\cot \theta+\csc \theta-1}{\cot \theta-\csc \theta+1}=\frac{1+\cos \theta}{\sin \theta}
cotθ−cscθ+1
cotθ+cscθ−1
=
sinθ
1+cosθ
Using trigonometric identity:
\csc ^{2} \theta-\cot ^{2} \theta=1csc
2
θ−cot
2
θ=1
Applying this in L.H.S of equation we get,
\frac{\cot \theta+\csc \theta-(\csc ^{2} \theta-\cot ^{2} \theta)}{\cot \theta-\csc \theta+1}
cotθ−cscθ+1
cotθ+cscθ−(csc
2
θ−cot
2
θ)
\text { Using } a^{2}-b^{2}=(a+b)(a-b), \text { we get } Using a
2
−b
2
=(a+b)(a−b), we get
\frac{\cot \theta+\csc \theta-(\csc \theta+\cot \theta)(\csc \theta-\cot \theta)}{\cot \theta-\csc \theta+1}
cotθ−cscθ+1
cotθ+cscθ−(cscθ+cotθ)(cscθ−cotθ)
\frac{(\cot \theta+\csc \theta)\{1-(\csc \theta-\cot \theta)\}}{\cot \theta-\csc \theta+1}
cotθ−cscθ+1
(cotθ+cscθ){1−(cscθ−cotθ)}
\text {on taking } \cot \theta+\csc \theta \text { as common }on taking cotθ+cscθ as common
\frac{(\cot \theta+\csc \theta)\{1-\csc \theta+\cot \theta\}}{\cot \theta-\csc \theta+1}
cotθ−cscθ+1
(cotθ+cscθ){1−cscθ+cotθ}
Cancelling terms we get,
\frac{(\cot \theta+\csc \theta)\{1-\csc \theta+\cot \theta\}}{\cot \theta-\csc \theta+1}
cotθ−cscθ+1
(cotθ+cscθ){1−cscθ+cotθ}
=\cot \theta+\csc \theta=\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}=\frac{\cos \theta+1}{\sin \theta}=\mathrm{R.H.S}=cotθ+cscθ=
sinθ
cosθ
+
sinθ
1
=
sinθ
cosθ+1
=R.H.S
Hence proved