Math, asked by yashsharmackt, 9 months ago

please solve it guys​

Attachments:

Answers

Answered by Raki4114
3

✞︎ Given series are x - 7 , x - 2 , x + 3......10 terms

✯︎ here a = x - 7 ; d = 5 ; n = 10

➪︎ Sn =  \frac{n}{2} (2a + (n - 1)d)

➪︎ Sn =  \frac{10}{2}   (2(x - 7) + (10 - 1)5)

➪︎ Sn = 5  (2x - 14 + 45)

➪︎ Sn = 5(2x  +  31)

➪︎ Sn = 10x  + 155

✰︎ Sum of 10 terms is 10x + 155....

Answered by Cynefin
4

 \large{ \bold{ \red{ \underline{ \underline{Question...}}}}}

 \large{ \sf{find \: the \: sum \: of \: ap \: x - 7,x - 2,}} \\  \large{ \sf{x + 3....upto \: 10 \: terms}}

 \bold{ \large{ \green{ \underline{ \underline{Answer...}}}}}

 \large{ \sf{10x + 155}}

 \large{ \bold{ \red{ \underline{ \underline{Solution...}}}}}

 \large{ \sf{  \to \: u \: must \: know..}} \\  \\  \boxed{ \green{ \large{ \sf{ \red{s}n =  \frac{n}{2} (2a + (n - 1)d)}}}} \\  \\  \large{ \sf{where \to  \:  \: \red{s}n = sum \: of \: n \: terms}} \\  \\  \large{ \sf{ \to \: n = no. \: of \: terms}} \\  \\  \large{  \sf{ \to \: a = first \: term}} \\  \\  \large{ \sf{ \to \: d = common \: difference}}

 \large{ \sf{ \to \:  \red{given} \: a =( x - 7)}} \\  \\  \large{ \sf{  \: d = 5 \: and \: n = 10}} \\  \\ \large{ \sf{ by \: using \: formula }}....\\  \\ { \large{ \sf{ \to \red{s}n =  \frac{n}{2}(2a + (n - 1)d}}} \\  \\   \large{ \sf{ \to \:  \red{s}10 =  \frac{10}{2} (2(x - 7) + (10 - 1)5)}} \\  \\  \large{ \sf{ \to \red{s}10 = 5(2x - 14 + (9)5)}} \\  \\  \large{ \sf{ \to \red{s}10 = 5(2x - 14 + 45)}} \\  \\  \large{ \sf{ \to \red{s}10 = 5(2x  +  31)}} \\  \\  \large{ \sf{ \boxed{ \to \red{s}10 = 10x  +  155}}}

 \large{ \bold{ \pink{required \: answer = 10x  + 155}}}

Similar questions