Math, asked by girishmane21, 1 month ago

please solve it
hskahskshskshskskshsjsjdjdjd​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\displaystyle\tt{I=\int^{1}_{-1}|x|\,dx}

\bigstar\,\,\blue{\tt{|x|=\begin{cases}\tt{x,\,\,\,\,\,\,\,\,x\ge0}\\\tt{-x,\,\,\,\,x<0}\end{cases}}}

So,

\displaystyle\tt{I=-\int^{0}_{-1}x\,dx+\int^{1}_{0}x\,dx}

\displaystyle\tt{\implies\,I=-\left[\dfrac{x^2}{2}\right]^{0}_{-1}+\left[\dfrac{x^2}{2}\right]^{1}_{0}}

\displaystyle\tt{\implies\,I=-\left[\dfrac{0}{2}-\dfrac{1}{2}\right]+\left[\dfrac{1}{2}-\dfrac{0}{2}\right]}

\displaystyle\tt{\implies\,I=\dfrac{1}{2}+\dfrac{1}{2}}

\displaystyle\tt{\implies\,I=1}

Similar questions