Math, asked by pratyushpahari, 2 months ago

Please solve it I have exam

Attachments:

Answers

Answered by Anonymous
16

Answer:

Question :-

\mapsto \bf{Solve :\: \dfrac{3x - 2}{2x - 3} =\: \dfrac{3x - 8}{x + 4}}\\

To Find :-

  • What is the value of x.

Solution :-

\dashrightarrow \sf\bold{\purple{\dfrac{3x - 2}{2x - 3} =\: \dfrac{3x - 8}{x + 4}}}

\implies \sf \dfrac{3x - 2}{2x - 3} =\: \dfrac{3x - 8}{x + 4}

\pink{\bigstar}\: \: \bf{By\: doing\: cross\: multiplication\: we\: get\: :-}

\implies \sf (3x - 2)(x + 4) =\: (2x - 3)(3x - 8)

\implies \sf 3x^2 + 12x - 2x - 8 =\: 6x^2 - 16x - 9x + 24

\implies \sf 6x^2 - 3x^2 - 16x - 9x - 12x + 2x + 24 + 8 =\: 0

\implies \sf 3x^2 - 25x - 10x + 32 =\: 0

\implies \sf 3x^2 - 35x + 32 =\: 0

\implies \sf 3x^2 - (32 + 3)x + 32 =\: 0

\pink{\bigstar}\: \: \bf{By\: splitting\: the\: middle\: term\: we\: get\: :-}

\implies \sf 3x^2 - 32x - 3x + 32 =\: 0

\implies \sf x(3x - 32) - 1(3x - 32) =\: 0

\implies \sf (x - 1)(3x - 32) =\: 0

\longrightarrow \sf x - 1 =\: 0

\longrightarrow \sf\bold{\red{x =\: 1}}

Either,

\longrightarrow \sf 3x - 32 =\: 0

\longrightarrow \sf 3x =\: 32

\longrightarrow \sf\bold{\red{x =\: \dfrac{32}{3}}}

{\small{\bold{\underline{\therefore\: The\: value\: of\: x\: is\: 1\: or\: \dfrac{32}{3}\: .}}}}

Answered by Salmonpanna2022
8

Step-by-step explanation:

Given:-

 \rm \:  \frac{3x - 2}{2x - 3 }  =  \frac{3x - 8}{x + 4}  \\

To find out:-

Value of x .

Solution:-

We have

 \rm \:  \frac{3x - 2}{2x - 3 }  =  \frac{3x - 8}{x + 4}  \\

Variable x cannot be equal to any of the value -4, 3/2 since dividing by zero is not defined. Multiply both sides on the equation by (2x - 3)(x + 4), the last common multiple of 2x - 3 , x + 4.

 \rm \: (x + 3)(3x - 2) = (2x - 3)(3x - 8) \\

Use the distribution property to multiply x + 4 by 3x -2 and combine like terms.

 \rm {3x}^{2}  + 10x - 8 = (2x - 3)(3x - 8) \\

Use the distribution property to multiply 2x -3 by 3x -8 and combine like terms.

  \rm  {3x}^{2}  + 10x - 8 =  {6x}^{2}  - 25x + 24 \\

Subtract 6x from both sides

 \rm  {3x}^{2}  + 10x - 8 -  {6x}^{2}  = - 25x + 24 \\

Add 24 to both sides.

Combine 10x and 25x to get 35x

 \rm  { - 3x}^{2}  + 35x - 8 = 24 \\

Subtract 24 from both sides

 \rm  { - 3x}^{2}   + 35x - 8 - 24 = 0 \\

Subtract 24 from -8 to get -32

 \rm   { - 3x}^{2}  + 35x - 32 = 0 \\

This equation is in standard form of ax² + bx + c = 0.

Substituting -3 from a , 35 from b and -32 from c in quadratic formula, \boxed{ \rm  \frac{ - b± \sqrt{ {b - 4ac}^{2} } }{2a}}

 \rm x = \frac{ - 35± \sqrt{35 - 4( - 3)( - 32)} }{2( - 3)}  \\

Square 35.

 \rm x = \frac{ - 35± \sqrt{1225 - 4( - 3)( - 32)} }{2( - 3)}  \\

Multiply -4 times -3.

 \rm x = \frac{ - 35± \sqrt{1225  + 12( - 32)} }{2( - 3)}  \\

Multiply 12 times -32.

 \rm x = \frac{ - 35± \sqrt{1225   -  384} }{2( - 3)}  \\

Add 1225 to -384.

 \rm x = \frac{ - 35± \sqrt{841} }{2( - 3)}  \\

Take the square root of 841.

 \rm x = \frac{ - 35± 29}{2( - 3)}  \\

Multiply 2 times -3 in numerator.

 \rm x = \frac{ - 35±29 }{ - 6}  \\

Now solve the equation  \rm x = \frac{ - 35±29 }{ - 6}  \\ when ± is plus.

Add -35 to 29.

 \rm \: x =  \frac{ - 6}{6}  \\

Divide -6 by -6

 \rm x = 1 \\

Now, solve the equation  \rm x = \frac{ - 35±29 }{ - 6}  \\ when ± is minus.

Subtract 29 from -35.

 \rm x =  \frac{ - 61}{ - 6}  \\

Reduce the fraction-64/-6 to the lower term by extracting and cancaling out 2.

 \rm x =  \frac{32}{3}  \\

Answer:-

 \rm x  = 1,x =  \frac{32}{3}  = 10 \frac{2}{3}  \\

Similar questions