Math, asked by sharansai42, 11 months ago

please solve it...
I will mark as brainliest...!​

Attachments:

Answers

Answered by Anonymous
155

\large{\underline{\underline{\mathfrak{\red{\sf{SOLUTION:-}}}}}}.

\large{\underline{\underline{\mathfrak{\sf{FIND\:HERE:-}}}}}.

  • Sin45° Cos30° + Cos30° Sin45°

Or,

  • \sin\:(45^{\circ}\:+\:30^{\circ})

_____________________

\large{\underline{\underline{\mathfrak{\red{\sf{EXPLANATION:-}}}}}}.

\bold{\underline{\:Using\:identity}}

  • \sin\:(A+B)\:=\:(\sin A\cos B\:+\cos A\sin B)

  • \sin\:(A-B)\:=\:(\sin A\cos B\:-\cos A\sin B)

____________________

Some Important Values

  • \sin45^{\circ}\:=\frac{1}{\sqrt{2}}

  • \sin30^{\circ}\:=\frac{1}{2}

  • \cos45^{\circ}\:=\frac{1}{\sqrt{2}}

  • \cos30^{\circ}\:=\frac{\sqrt{3}}{2}

______________________

So ,

=> Sin(45°+30°) = Sin45° Cos30° + Cos30° Sin45°

Take L.H.S.,

=> Sin45° Cos30° + Cos30° Sin45°

Keep all values

\implies\frac{1}{\sqrt{2}}\times\:\frac{\sqrt{3}}{2}\:+\:\frac{1}{\sqrt{2}}\times\:\frac{1}{2}

\implies\frac{\sqrt{3}}{2\sqrt{2}}\:+\frac{1}{2\sqrt{2}}

\implies\frac{(\sqrt{3}+1)}{2\sqrt{2}}

So , we can say that

\bold{\boxed{\boxed{\sin\:(45^{\circ}\:+\:30^{\circ})\:=\frac{(\sqrt{3}+1)}{2\sqrt{2}}}}}

___________________

Answered by Anonymous
16

\large{\underline{\underline{\mathfrak{\red{\sf{SOLUTION:-}}}}}}

.

\large{\underline{\underline{\mathfrak{\sf{FIND\:HERE:-}}}}}

.

Sin45° Cos30° + Cos30° Sin45°

Or,

\sin\:(45^{\circ}\:+\:30^{\circ})sin(45 ∘ +30 ∘ )

_____________________

\large{\underline{\underline{\mathfrak{\red{\sf{EXPLANATION:-}}}}}}

.

\bold{\underline{\:Using\:identity}} </p><p>

\sin\:(A+B)\:=\:(\sin A\cos B\:+\cos A\sin B)sin(A+B)=(sinAcosB+cosAsinB)

\sin\:(A-B)\:=\:(\sin A\cos B\:-\cos A\sin B)sin(A−B)=(sinAcosB−cosAsinB)

____________________

Some Important Values

\sin45^{\circ}\:=\frac{1}{\sqrt{2}}sin45

\sin30^{\circ}\:=\frac{1}{2}sin30

\cos45^{\circ}\:=\frac{1}{\sqrt{2}}cos45

\cos30^{\circ}\:=\frac{\sqrt{3}}{2}cos30

______________________

So ,

=> Sin(45°+30°) = Sin45° Cos30° + Cos30° Sin45°

Take L.H.S.,

=> Sin45° Cos30° + Cos30° Sin45°

Keep all values

\implies\frac{1}{\sqrt{2}}\times\:\frac{\sqrt{3}}{2}\:+\:\frac{1}{\sqrt{2}}\times\:\frac{1}{2}⟹ 2

\implies\frac{\sqrt{3}}{2\sqrt{2}}\:+\frac{1}{2\sqrt{2}}⟹ </p><p>2

\implies\frac{(\sqrt{3}+1)}{2\sqrt{2}}⟹ </p><p>2

So , we can say that

\bold{\boxed{\boxed{\sin\:(45^{\circ}\:+\:30^{\circ})\:=\frac{(\sqrt{3}+1)}{2\sqrt{2}}}}} </p><p>sin(45

___________________

hope it helps uh ❤️!

Similar questions