please solve it I will mark them brainlist
Answers
Answer:
l²m²(l²+m²+3)=1 is proved.
Step-by-step explanation:
Given :
Cosecθ-sinθ=l
Secθ-Cosθ=m
RTP:
l²m²(l²+m²+3)=1
Solution:
▪Cosecθ-sinθ=l
1/sinθ -sinθ=l
1-sin²θ/sinθ=l
cos²θ/sinθ=l [∵Sin²θ+Cos²θ=1]
▪Secθ-Cosθ=m
1/cosθ-cosθ=m
1-cos²θ/cosθ=m
sin²θ/cosθ=m [∵Sin²θ+Cos²θ=1]
》l²m²(l²+m²+3)
》(Cos²θ/sinθ)²(sin²θ/cosθ)²[(cos²θ/sinθ)²+(sin²θ/cosθ)²+3]
》sin²θCos²θ[Cos⁴θ/sin²θ +sin⁴θ/cos²θ +3]
》sin²θCos²θ[[Cos⁶θ+Sin⁶θ+3sin²θCos²θ/Sin²θCos²θ]
》(cos²θ)³ +( sin²θ)³ +3sin²θCos²θ
》(Cos² θ+sin²θ)³ - 3Sin²θCos²θ(Sin²θ+cos²θ] +3sin²θCos²θ
[∵a³+b³=(a+b)³-3ab(a+b)]
》1-3Sin²θCos²θ(1)+3sin²θCos²θ
》1
-(Hence proved)
Hope it was clear and helpful.....