Math, asked by Anonymous, 9 months ago

please solve it it is important in full explanation​

Attachments:

Answers

Answered by varunsbudati
1

Answer:

Step-by-step explanation:

(x +20) + 55 + (3x-5)= 180     {Angle Sum property}

x+2+55+3x-5 = 180

4x+52=180

4x=180-52

4x=128

x=128/4

x=32

AOC=x+20

       =32+20

       =52

BOD=3x-5

       =3*32 - 5

       =96-5

       =91

Answered by brokendreams
0

The answer is angles \angle AOC=47.5\°  and  \angle DOB=77.5\°.

Step-by-step explanation:

We are given a straight line AOB having three angles in it,

\angle AOC = (x+20)

\angle COD =55\°

\angle DOB = (3x-5)

and we have to find angles \angle AOC  and \angle DOB  by calculating 'x'.

  • Formula used,

A straight line have total angle is 180°.

  • Calculation for 'x'

we have

\angle AOC = (x+20)

\angle COD =55\°

\angle DOB = (3x-5)

by using formula we can write,

\angle AOC+\angle COD + \angle DOB=180\°

(x+20)+55+(3x-5)=180\°

x+20+55+3x-5=180\°

4x+70\°=180\°

4x=180\°-70\°

4x=110\°

x=\frac{110}{4}

x=27.5

we get the value of x as x=27.5.

  • Calculating  \angle AOC  and \angle DOB

\angle AOC = (x+20)

           =27.5+20

          =47.5\°

\angle DOB=3x-5

            =3*27.5-5

            =82.5-5

           =77.5

We get the answer of this question as \angle AOC=47.5\°  and  \angle DOB=77.5\°.

Similar questions