Math, asked by jyotirmoy6, 1 year ago

Please solve it...it's very important and don't do any fraud please​

Attachments:

Answers

Answered by tahseen619
1

x +  \frac{1}{x}  = 4 \\  {(x +  \frac{1}{x} )}^{2}  =  {4}^{2}  \\   {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 16 - 2 \\    {( {x}^{2} +  \frac{1}{ {x}^{2} }  )}^{2}  =  {14}^{2}  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 196 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 194

jyotirmoy6: why you add 2
Answered by LovelyG
2

Answer :

x +  \frac{1}{x}  = 4 \\ \\   \ \bf on \: squaring \: both \: sides : \\  \\ (x +  \frac{1}{x} ) {}^{2}  = (4) {}^{2}  \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 = 16 \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 16 - 2 \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 14 \\  \\ \bf on \: squaring \: both \: sides : \\  \\(x {}^{2}  +  \frac{1}{x {}^{2} } ) {}^{2}  = (14) {}^{2}  \\  \\ x {}^{4}  +  \frac{1}{x {}^{4} } + 2 = 196 \\  \\ x{}^{4}  +  \frac{1}{x {}^{4}} = 196 - 2 \\  \\ \boxed{ \bf x{}^{4}  +  \frac{1}{x {}^{4}} = 194}

_______________________


LovelyG: ( x + 1 / x )²
LovelyG: Sorry bro
jyotirmoy6: can i call you sis
LovelyG: yes sure!
jyotirmoy6: your class
jyotirmoy6: which class
jyotirmoy6: please message me directly
jyotirmoy6: we can do conservation there
LovelyG: No personal messages please! It's comment section!
jyotirmoy6: ok u can message me
Similar questions