Math, asked by pareshdas8014, 7 months ago

Please solve it... Its urgent...​

Attachments:

Answers

Answered by sritarutvik
0

Step-by-step explanation:

3sinbeta-4cosbeta=0

(4cotbeta-3)/(3cotbeta+4)

=(4cosbeta/sinbeta -3)/(3cosbeta/sinbeta+4)

=((4cosbeta-3sinbeta)/sinbeta)/((3cosbeta+4sinbeta)/sinbeta)

=(4cosbeta-3sinbeta)/(3cosbeta+4sinbeta)

=-(3sinbeta-4cosbeta)/(3cosbeta+4sinbeta)

=0/(3cosbeta+4sinbeta)

=0

Answered by sonisiddharth751
0

given that :-

 \sf \bf \: \:  3 \sin\beta   - 4 \cos \beta  = 0

to find :-

 \sf \: the \:value \: of \:  \:  \:  \: \dfrac{4 \cot \beta  - 3 }{3 \cot \beta  + 4}

Solution :-

 \sf \: 3 \sin \beta  - 4 \cos \beta  = 0 \\  \\  \sf\: 3 \sin \beta  = 4 \cos \beta  \\  \\  \sf \red {or} \:\:\: \:\:\:\dfrac{  \sin\beta  }{ \cos \beta  }  =  \dfrac{4}{3}  \\  \\ \sf \red {or} \:\:\: \:\:\: \tan \beta  =  \dfrac{4}{3}  \\  \\  \sf \: \red {or}   \:\:\:\:\:\:\frac{1}{ \cot \beta  }  =  \dfrac{4}{3}  \\  \\  \sf \red {or} \:\:\: \:\:\:\cot \beta  =  \dfrac{3}{4}  \\  \\

now put the value of cot beta = 3/4 in

 \sf \dfrac{4 \cot \beta  - 3 }{3 \cot \beta  + 4}

we get :-

 \sf \red \implies \: \dfrac{4 \cot \beta  - 3 }{3 \cot \beta  + 4}  \\  \\  \sf \red\implies   \dfrac{4 \times  \frac{3}{4}   - 3}{3 \times  \frac{3}{4}  + 4}  \\  \\  \sf \red \implies \:  \dfrac{ \cancel4 \times  \frac{3}{ \cancel4}   - 3}{3 \times  \frac{3}{4}  + 4} \\  \\  \sf \red\implies \:  \dfrac{3 - 3}{ \frac{9 + 16}{4} }  \\  \\  \sf \red\implies  \frac{0 \times 4}{25}  \\  \\ \small{\blue{\fcolorbox{blue}{lime}{\boxed{\orange{\bf{\fcolorbox{blue}{black} { { \blue{ 0 }}}}}}}}}

hence value of  \sf \dfrac{4 \cot \beta  - 3 }{3 \cot \beta  + 4} is 0

Similar questions