Please solve it (no spam)
Answers
Answer:
a = 1 ; b = ±√2
Step-by-step explanation:
Given polynomial is f(x) = x³ - 3x² + x + 1 .
Here a = 1 , b = -3 , c = 1 , d = 1 .
Let α = ( a - b ) , β = a and γ = ( a + b ) .
As we know,
→ α + β + γ = -b/a .
⇒ ( a - b ) + a + ( a - b ) = -(-3)/1 .
⇒ 3a = 3 .
⇒ a = 3/3 .
∴ a = 1
And,
→ αβ + βγ + γα = c/a .
⇒ a( a - b ) + a( a + b ) + ( a + b )( a - b ) = 1/1 .
⇒ a² - ab + a² + ab + a² - b² = 1 .
⇒ 3a² - b² = 1 .
⇒ ( 3 × 1² ) - b² = 1 . { ∵ a = 1 }
⇒ 3 - b² = 1 .
⇒ b² = 3 - 1 .
⇒ b² = 2 .
∴ b = ±√2 .
HOPE THIS ANSWER HELPS YOU ✍✍....
The roots of the polynomial are, (a-b), a & (a+b).
Value of a
Relation between roots (x1,x2,x3) of a cubic equation and its coefficients (p,q,r,s) is given by,
x1 +x2 +x3 = -q/p ---> (1)
x1.x2.x3 = -s/p ------>(2)
We have, x1 =a-b ; x2 = a ; x3 = a +b
And, p=1 ; q=-3 ; r =1 ; s= 1.
Hence, from equation 1 we have,
a-b+a+a+b = -(-3/1)
3a = 3
=>
To find value of b:-
From equation 2,
(a-b)(a+b)(a) = -1/1
Put value of a=1 ,
Hence,