Math, asked by prince5132, 9 months ago

please solve it

NO SPAMMED
  \to \sf \cot ^{ - 1}  \left \{ \dfrac{ \sqrt{1 +  \sin \: x   }  \:  \:  +  \sqrt{1 -  \sin \: x } }{  \sqrt{1 +  \sin \: x}   \:  \:  -  \sqrt{1 -  \sin \: x } }  \right \} \:  =  \dfrac{x}{2} ; \: x \in \:  \bigg(0, \dfrac{ \pi}{4}  \bigg)

Answers

Answered by BrainlyTornado
94

TO PROVE:

\sf cot ^{ - 1} \left(\dfrac{ \sqrt{1 + \sin \: x } + \sqrt{1 - \sin \: x } }{ \sqrt{1 + \sin \: x}  - \sqrt{1 - \sin \: x } } \right )= \dfrac{x}{2}

PROOF:

 \leadsto\sf Take \ \sqrt{1 + sin\ x}

 \boxed{ \large{ \bold{ \gray{sin  \ 2x = 2  \ sin  \ x \ cos \ x}}}}

\leadsto \sf sin  \ x = 2  \ sin  \  \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2}  \right)

Add one on both sides.

 \leadsto\sf 1 + sin  \ x = 1 + 2  \ sin  \  \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2}  \right)

 \boxed{ \large{ \bold{ \gray{sin ^{2}   \  \frac{x}{2}  +  {cos}^{2} \  \frac{x}{2}  =1}}}}

1 + 2 sin(x/2) cos (x/2) = sin² (x/2) + cos² (x/2) + 2 sin(x/2) cos (x/2)

\boxed{ \large{ \bold{ \gray{ A^2+ 2AB + B^2 = (A+B)^2}}}}

1 - sin x = [sin (x/2) - cos (x/2)]²

 \leadsto\sf 1 + sin  \ x = \left( sin  \  \left(\dfrac{x}{2}\right)  + \ cos \ \left( \dfrac{x}{2}  \right) \right) ^{2}

 \leadsto\sf  \sqrt{1 + sin  \ x} = sin  \  \left(\dfrac{x}{2}\right)  + \ cos \ \left( \dfrac{x}{2}  \right)

 \sf Take \ \sqrt{1  -  sin\ x}

 \boxed{ \large{ \bold{ \gray{sin  \ 2x = 2  \ sin  \ x \ cos \ x}}}}

\leadsto \sf   - sin  \ x =  - 2  \ sin  \  \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2}  \right)

Add one on both sides

 \leadsto\sf 1  -  sin  \ x = 1  -  2  \ sin  \  \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2}  \right)

\boxed{ \large{ \bold{ \gray{sin ^{2}   \  \frac{x}{2}  +  {cos}^{2} \  \frac{x}{2}  =1}}}}

1 - 2 sin(x/2) cos (x/2) = sin² (x/2) + cos² (x/2) - 2 sin(x/2) cos (x/2)

\boxed{ \large{ \bold{ \gray{ A^2 -  2AB + B^2 = (A - B)^2}}}}

1 - sin x = [sin (x/2) - cos (x/2)]²

This can also be written as:

1 - sin x = [cos (x/2) - sin (x/2)]²

 \leadsto\sf  \sqrt{1  - sin  \ x }=  \ cos \ \left( \dfrac{x}{2}  \right) - sin  \  \left(\dfrac{x}{2}\right)

\leadsto \sf Take \ \sqrt{1 + sin\ x} + \sqrt{1  -  sin\ x}

sin (x/2) + cos (x/2) + cos (x/2) - sin (x/2)

 \leadsto\sf \sqrt{1 + sin\ x} + \sqrt{1  -  sin\ x} = 2 cos \  \left(\dfrac{x}{2}  \right)

 \sf Take \ \sqrt{1 + sin\ x}  -  \sqrt{1  -  sin\ x}

sin (x/2) + cos (x/2) - cos (x/2) + sin (x/2)

 \leadsto\sf \sqrt{1 + sin\ x}  - \sqrt{1  -  sin\ x} = 2 sin \  \left(\dfrac{x}{2}  \right)

Substitute the respective values.

\leadsto\sf \cot ^{ - 1} \left(  \dfrac{2cos \ \left(\dfrac{x}{2} \right )}{ 2sin \ \left(\dfrac{x}{2}\right ) }\right )

\leadsto\sf  \cancel{cot}^{ - 1}  \left( \cancel{cot} \ \left( \dfrac{x}{2} \right)\right)

\leadsto\sf cot ^{ - 1} \left(\dfrac{ \sqrt{1 + \sin \: x } + \sqrt{1 - \sin \: x } }{ \sqrt{1 + \sin \: x}  - \sqrt{1 - \sin \: x } } \right )= \dfrac{x}{2}

HENCE PROVED.

Answered by rocky200216
127

\huge\bold{\green{\underbrace{\orange{SOLUTION:-}}}}

PROOF :-

✍️ L.H.S ;

 \to \sf \cot ^{ - 1} \left \{ \dfrac{ \sqrt{1 + \sin \: x } \: \: + \sqrt{1 - \sin \: x } }{ \sqrt{1 + \sin \: x} \: \: - \sqrt{1 - \sin \: x } } \right \}

✍️ First of all, we simplify

\bold{\dfrac{\sqrt{1\:+\:\sin{x}}\:+\:\sqrt{1\:-\:\sin{x}}}{\sqrt{1\:+\:\sin{x}}\:-\:\sqrt{1\:-\:\sin{x}}}\:} .

\rm{=\:\dfrac{\sqrt{1\:+\:\sin{x}}\:+\:\sqrt{1\:-\:\sin{x}}}{\sqrt{1\:+\:\sin{x}}\:-\:\sqrt{1\:-\:\sin{x}}}\:\times\:{\dfrac{\sqrt{1\:+\:\sin{x}}\:+\:\sqrt{1\:-\:\sin{x}}}{\sqrt{1\:+\:\sin{x}}\:+\:\sqrt{1\:-\:\sin{x}}}}\:}

\rm{=\:\dfrac{(\sqrt{1\:+\:\sin{x}}\:+\:\sqrt{1\:-\:\sin{x}})^2}{1\:+\:\sin{x}\:1\:-\:\sin{x}}\:}

\rm{=\:\dfrac{1\:+\:\sin{x}\:+\:1\:-\:\sin{x}\:+\:2\:\sqrt{(1\:+\:\sin{x})\:(1\:-\:\sin{x})}\:}{2\:\sin{x}}\:}

\rm{=\:\dfrac{2\:+\:2\:\sqrt{1\:-\:\sin^2{x}}}{2\:\sin{x}}\:}

\rm{=\:\dfrac{1\:+\:\cos{x}}{\sin{x}}\:}

\rm{=\:\dfrac{1\:+\:2\:\cos^2x/2\:-\:1}{2\:\sin{x/2}\:.\:\cos{x/2}\:}\:}

\rm{\purple{=\:\cot{x/2}\:}}

✍️ So, we also write

\rm{\cot^{-1}\:({\dfrac{\sqrt{1\:+\:\sin{x}}\:+\:\sqrt{1\:-\:\sin{x}}}{\sqrt{1\:+\:\sin{x}}\:-\:\sqrt{1\:-\:\sin{x}}}})\:}

\rm{=\:\cot^{-1}\:(\cot{x/2})\:}

\rm{=\:\dfrac{x}{2}\:} = R.H.S .

✍️ x/2 also present in the range of

(0 , π/2) .

✍️ So, L.H.S = R.H.S .

✍️ Hence, Proved .

_______________________________

Formula which are applied in the above is;

\checkmark\:\large\mathcal{\orange{\boxed{(a\:+\:b)\:(a\:-\:b)\:=\:a^2\:-\:b^2\:}}}

\checkmark\:\large\mathcal{\green{\boxed{(a\:+\:b)^2\:=\:a^2\:+\:b^2\:+\:2\:a\:b\:}}}

\checkmark\:\large\mathcal{\boxed{\sin^2{x}\:+\:\cos^2{x}\:=\:1\:\:\implies\:1\:-\:\sin^2{x}\:=\:\cos^2{x}\:}}

\checkmark\:\large\mathcal{\red{\boxed{\sin{2x}\:=\:2\:\sin{x}\:.\:\cos{x}\:}}}

\checkmark\:\large\mathcal{\purple{\boxed{\dfrac{\cos{x}}{\sin{x}}\:=\:\cot{x}\:}}}

\checkmark\:\large\mathcal{\blue{\boxed{\cot^{-1}(\cot\:{x})\:=\:x\:}}}

_______________________________

Similar questions