English, asked by roshnikumari12435, 6 months ago

please solve it ok............​

Attachments:

Answers

Answered by Anonymous
46

 \sf \:  {ax}^{2}   + bx + c = 0 \\  \\  \\  \sf \: x =  \frac{b \: ± \:  \sqrt{ {b}^{2} - 4ac  } }{2a}  \\  \\  \\  \sf \: x =  \frac{ - 7± \sqrt{ {7}^{2}  - 4( \sqrt{2} )(5 \sqrt{2}) } }{2 \sqrt{2} }  \\  \\  \\  \sf \: x =  \frac{ - 7± \sqrt{49 - 40} }{2 \sqrt{2} }  \\  \\  \\   \sf \implies \: x =  \frac{ - 7±3}{2 \sqrt{2} }  \\  \\  \\  \sf \:  x_{1} =  \frac{ - 4}{2 \sqrt{2} }  =  -  \sqrt{2}  \\  \\  \\  \sf \: x_{2} =  \frac{ - 10}{2 \sqrt{2} }  =  \frac{ - 5}{ \sqrt{2} }

Answered by infotmondal16
0

Answer:

 \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0

 =>  \sqrt{2}  {x}^{2}  + 2x + 5x + 5 \sqrt{2}  = 0

 =>  \sqrt{2} x(x +  \sqrt{2} ) + 5(x +  \sqrt{2} ) = 0

 => (x +  \sqrt{2} )( \sqrt{2} x + 5) = 0

if \:  \: x +  \sqrt{2}  = 0 \\  => x =  -  \sqrt{2}

or \:  \:  \sqrt{2} x + 5 = 0 \\  =>  \sqrt{2} x =  - 5 \\  => x =  -  \frac{5}{ \sqrt{2} }  =  -  \frac{5 \sqrt{2} }{2}

Explanation:

Hope it will help you.

Please give a thanks and mark as brainliest.

Similar questions