Physics, asked by ruhi87075, 10 months ago

please solve it Physical science experts​

Attachments:

Answers

Answered by shadowsabers03
1

Correct Question:-

The coordinates of a moving particle at any time \sf{t} are given by \sf{x=\alpha\,t^3} and \sf{y=\beta\,t^3.} The speed of the particle at time \sf{t} is given by,

\sf{1)\quad 3t\sqrt{\alpha^2+\beta^2}\quad\quad\quad\quad2)\quad3t^2\sqrt{\alpha^2+\beta^2}}

\sf{3)\quad t^2\sqrt{\alpha^2+\beta^2}\quad\quad\quad\quad4)\quad\sqrt{\alpha^2+\beta^2}}

Solution:-

The velocity of the particle along x direction is,

\longrightarrow\sf{v_x=\dfrac{dx}{dt}}

\longrightarrow\sf{v_x=\dfrac{d}{dt}\,\left[\alpha\,t^3\right]}

\longrightarrow\sf{v_x=3\alpha\,t^2}

The velocity of the particle along y direction is,

\longrightarrow\sf{v_y=\dfrac{dy}{dt}}

\longrightarrow\sf{v_y=\dfrac{d}{dt}\,\left[\beta\,t^3\right]}

\longrightarrow\sf{v_x=3\beta\,t^2}

Hence speed of the particle is,

\longrightarrow\sf{v=\sqrt{(v_x)^2+(v_y)^2}}

\longrightarrow\sf{v=\sqrt{(3\alpha\,t^2)^2+(3\beta\,t^2)^2}}

\longrightarrow\sf{v=\sqrt{9\alpha^2\,t^4+9\beta^2\,t^4}}

\longrightarrow\sf{v=\sqrt{9t^4\left(\alpha^2+\beta^2\right)}}

\longrightarrow\underline{\underline{\sf{v=3t^2\sqrt{\alpha^2+\beta^2}}}}

Hence (2) is the answer.

Similar questions