Math, asked by Priyankasinghrathor, 28 days ago

Please solve it please fast​

Attachments:

Answers

Answered by shadowsabers03
8

Question in English:-

What is the value of x in the equation \small\text{$\sqrt{x^2+2x-3}+\sqrt{x^2-x}=\sqrt{5(x-1)}\ ?$}

Solution:-

Given,

\small\text{$\longrightarrow\sqrt{x^2+2x-3}+\sqrt{x^2-x}=\sqrt{5(x-1)}$}

First let us find the domain of the equation.

Here the restrictions are,

  • \small\text{$x^2+2x-3\geq0\quad\dots(i)$}
  • \small\text{$x^2-x\geq0\quad\dots(ii)$}
  • \small\text{$5(x-1)\geq0\quad\dots(iii)$}

[∵ √x is defined only for x ≥ 0.]

Considering (i),

\small\text{$\longrightarrow x^2+2x-3\geq0$}

\small\text{$\longrightarrow(x+3)(x-1)\geq0$}

\small\text{$\Longrightarrow x\in(-\infty,\ -3]\cup[1,\ \infty)\quad\dots(1)$}

Considering (ii),

\small\text{$\longrightarrow x^2-x\geq0$}

\small\text{$\longrightarrow x(x-1)\geq0$}

\small\text{$\Longrightarrow x\in(-\infty,\ 0]\cup[1,\ \infty)\quad\dots(2)$}

Considering (iii),

\small\text{$\longrightarrow 5(x-1)\geq0$}

\small\text{$\longrightarrow x-1\geq0$}

\small\text{$\Longrightarrow x\in[1,\ \infty)\quad\dots(3)$}

Taking (1) ∧ (2) ∧ (3) we get,

\small\text{$\longrightarrow x\in[1,\ \infty)$}

This is the domain. D = [1, ∞).

Now,

\small\text{$\longrightarrow\sqrt{x^2+2x-3}+\sqrt{x^2-x}=\sqrt{5(x-1)}$}

\small\text{$\longrightarrow\sqrt{(x+3)(x-1)}+\sqrt{x(x-1)}-\sqrt{5(x-1)}=0$}

\small\text{$\longrightarrow\sqrt{x-1}\left(\sqrt{x+3}+\sqrt x-\sqrt5\right)=0$}

This implies,

\small\text{$\longrightarrow\sqrt{x-1}=0$}

\small\text{$\longrightarrow x-1=0$}

\small\text{$\longrightarrow x=1\quad\dots(4)$}

or,

\small\text{$\longrightarrow\sqrt{x+3}+\sqrt x-\sqrt5=0$}

\small\text{$\longrightarrow\sqrt{x+3}=\sqrt5-\sqrt x$}

\small\text{$\longrightarrow x+3=(\sqrt5-\sqrt x)^2$}

\small\text{$\longrightarrow x+3=5+x-2\sqrt{5x}$}

\small\text{$\longrightarrow2\sqrt{5x}=2$}

\small\text{$\longrightarrow\sqrt{5x}=1$}

\small\text{$\longrightarrow5x=1$}

\small\text{$\longrightarrow x=\dfrac{1}{5}\quad\dots(5)$}

Taking (4) ∨ (5),

\small\text{$\longrightarrow x\in\left\{\dfrac{1}{5},\ 1\right\}$}

Now this set has to be intersected with the domain D.

\small\text{$\longrightarrow x\in\left\{\dfrac{1}{5},\ 1\right\}\cap D$}

\small\text{$\longrightarrow x\in\left\{\dfrac{1}{5},\ 1\right\}\cap[1,\ \infty)$}

\small\text{$\longrightarrow x\in\{1\}$}

\small\text{$\Longrightarrow\underline{\underline{x=1}}$}

Hence 1 is the value of x.

Similar questions