CBSE BOARD XII, asked by toppers16, 10 months ago

please solve it please help​

Attachments:

Answers

Answered by Anonymous
16

Explanation:

MULTIPLE EQUATION 1 WITH. 3..BOTH SIDE..

500 \times 3 = px \frac{2}{5}  \times 3 + py \frac{3}{5}  \times 3

______________________________

1500 =  \frac{6}{5} px +  \frac{9}{5} py

_______________________________

MULTIPLE EQUATION second with 2 both the side...

400 \times 2 = px \frac{3}{5}  \times 2 + py \frac{2}{5}  \times 2

800  =  \frac{6}{5} px +  \frac{4}{5} py

_______________________________

now substrate eq 1 with eq 2

we get

 \frac{6}{5} px +  \frac{9}{5} py -  \frac{6}{5} px -  \frac{4}{5} py = 1500 - 800

 \frac{9 - 4}{5} py = 700

py = 700

_______________________________

NOW PUT THE VALUE OF PY IN EQ 1

1500 =  \frac{6}{5} px +  \frac{9}{5}  \times 700

1500 =  \frac{6}{5} px + 1260

px = 200.

_______________________________

HOPE IT HELPED ✌️❤️

MARK ME AS BRAINLIST..

Answered by Anonymous
6

Your answer is

x = 200

y = 700

Explanation

Given ,

500 = px  \frac{2}{5}  + py \frac{3}{5}  \\ 400 = px \frac{3}{5 }  + py \frac{2}{5}

x = Px

( Say )

y = Py

500 =  \frac{px2 + py3}{5} \\ 2500 = px2 + py3  \\and \\   400 =  \frac{px3 + py2}{5}    \\ 2000 = px3 + py2

  • Px = X

( Say )

  • Py = Y

So ,

2x + 3y = 2500.........« 1 »

3x + 2y = 2000..........« 2 »

Subtracting (1) - (2) , we get ,

  • y - x = 500

  • y = ( 500 + x )

Putting the value of y in ( 1 ) ,

  • 2x + 3 ( 500 + x ) = 2500

  • 2x + 1500 + 3x = 2500

  • 5x = 1000

  • x = 200

So ,

  • y = 500 + x = 500 + 200 = 700

Hence ,

  • x = Px = x = 200

  • y = py = y = 700

\rule{200}{4}

Checking answer ,

  • x * 2 / 5 + y *3 / 5

if x = 200 and y = 700 ,

  • 200 x 2 / 5 + 700 x 3 / 5

  • = 500

Similarly ,

  • With equation ( ii )

  • 200 x 3 / 5 + 700 x 2 / 5

  • = 400
Similar questions