Math, asked by evanshi2004, 4 months ago

please solve it plz ​

Attachments:

evanshi2004: pleasure
ykverma1904: its ok
evanshi2004: ✌✌
ykverma1904: you are in 10th class
evanshi2004: yea
ykverma1904: because this is ncert
ykverma1904: and i am also in 10th
evanshi2004: oh great
ykverma1904: wlcm
evanshi2004: ✌✌

Answers

Answered by Anonymous
4

Answer:

R.H.S , Hence proved in the above attachment.

hope it helps you!

Attachments:

evanshi2004: thx u so much ❤️
Anonymous: welcome
evanshi2004: ✌✌
Answered by Ekaro
15

To Prove :-

\sf (cosec \theta - cot \theta)^2 = \dfrac{1- cos \theta}{1+cos \theta}

Solution :-

 \sf LHS=(cosec \theta - cot \theta)^2

\dag \bf \ cosec \theta = \dfrac{1}{sin \theta}

\dag \bf \ cot \theta = \dfrac{cos \theta}{sin \theta}

 \sf:\implies\left( \dfrac{1}{sin \theta} - \dfrac{cos\theta}{sin \theta} \right)^2

:\implies\sf \dfrac{(1-cos \theta)^2}{sin^2 \theta}

\dag\bf \ sin^2 \theta = 1- cos^2 \theta

\sf:\implies\dfrac{(1-cos \theta)^2}{1-cos^2 \theta}

 \sf :\implies \dfrac{(1-cos\theta)(1-cos\theta)}{(1+cos\theta)(1-cos\theta)}

\bf :\implies \dfrac{1-cos\theta}{1+cos\theta} =RHS

Hence proved!

Trigonometric Identities :

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions