Math, asked by BabaRamDev0, 3 months ago

Please Solve it Properly :----



 \frac{17(2 - x) \: - 5(x + 12) }{1 - 7x}  \:   =  \: 8 \\

Answers

Answered by vatsav565
0

Step-by-step explanation:

Please Solve it Properly :----Please Solve it Properly :----Please Solve it Properly :----

Answered by thebrainlykapil
148

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  \bf\frac{17(2 - x) \: - 5(x + 12) }{1 - 7x} \: = \: 8 \\

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:\frac{17(2 - x) \: - 5(x + 12) }{1 - 7x} \: = \: 8   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{34 - 17x \: - 5x - 60}{1 - 7x} \: = \:  \frac{8}{1}  }}\\

 \\

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{ - 22x \:  - 26}{1 \:  -  \: 7x} \: = \:  \frac{8}{1}  }}\\

\\ \\

Using Cross Multiplaction:-

 \\

\qquad \quad {:} \longrightarrow \sf{ \bf{1 \times ( - 22x - 26) \:  =  \: 8 \times (1 - 7x)  }}\\

\qquad \quad {:} \longrightarrow \sf{ \sf{  - 22x - 26 \:  =  \: 8  - \: 56x  }}\\

\qquad \quad {:} \longrightarrow \sf{ \sf{  - 22x  \:  +  \:56x \:   =  \: 8   +  \:26  }}\\

\qquad \quad {:} \longrightarrow \sf{ \sf{  34x \:   =  \: 34  }}\\

\qquad \quad {:} \longrightarrow \sf{ \sf{  x \:   =  \:  \frac{34}{34} }}\\

\qquad \quad {:} \longrightarrow \sf{ \bf{  x \:   =  \:   \cancel \purple{\frac{34}{34}} }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \:x \: = \: 1  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge :-

\underbrace\red{\boxed{ \sf \green{ Rules \: to \:Solve \: a \: Equation}}}

  • Rule 1 :- Same quantity ( number ) can be added to both side of an equation without changing the equality.
  • Rule 2 :- Same quantity can be subtracted from both sides of an equation without changing the quality
  • Rule 3 :- Both sides of an equation may be multiplied by the same non zero number without changing the quality.
  • Rule 4 :- Both sides of an equation may be divided by the same non zero number without changing the quality.

\begin{gathered}\\ \\\end{gathered}

Note :-

  • It should be noted that some complicated equation can be solved by using two or more of these rules together.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions